Skip to main content

Part of the book series: Texts in Applied Mathematics ((TAM,volume 36))

  • 3096 Accesses

Abstract

We will now begin our study of system theory. This chapter is devoted to examining one of the building blocks used in the foundation of this course, the continuous time, state space system. Our goal is to cover the fundamentals of state space systems, and we will consider and answer questions about their basic structure, controlling and observing them, and representations of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and references

  1. J.C. Doyle. Lecture notes in advances in multivariable control. ONR/Honeywell Workshop, 1984.

    Google Scholar 

  2. A.I. Lur’e and V.N. Postnikov. On the theory of stability of controlled systems. Prikladnaya Matematika i Mekhanika,8:246–248, 1944. In Russian.

    Google Scholar 

  3. J. Bernussou, P.L.D. Peres, and J.C. Geromel. A linear programming oriented procedure for quadratic stabilization of uncertain systems. Systems and Control Letters, 13: 65–72, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. M. Lu, K. Zhou, and J. C. Doyle. Stabilization of LFT systems. In Proc. IEEE Conference on Decision and Control, 1991.

    Google Scholar 

  5. P. Gahinet and P. Apkarian. A Linear Matrix Inequality approach to H control. International Journal of Robust and Nonlinear Control, 4: 421–448, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Packard. Gain scheduling via linear fractional transformations. Systems and Control Letters, 22: 79–92, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  7. D.C. Youla, H.A. Jabr, and J.J. Bongiorno Jr. Modern Wiener-Hopf design of optimal controllers: part II. IEEE Transactions on Automatic Control, 21: 319–338, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Kucera. Discrete Linear Control: the Polynomial Approach. Wiley, 1979.

    Google Scholar 

  9. C.A. Desoer, R.W. Liu, J. Murray, and R. Saeks. Feedback system design: the fractional representation approach. IEEE Transactions on Automatic Control, 25: 399–412, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Boyd and C. Barratt. Linear Controller Design: Limits of Performance. Prentice Hall, 1991.

    Google Scholar 

  11. M. A. Dahleh and I. J. Diaz-Bobillo. Control of Uncertain Systems: a Linear Programming Approach. Prentice Hall, 1995.

    Google Scholar 

  12. M. Vidyasagar. Input-output stability of a broad class of linear time invariant multvariable feedback systems. SIAM Journal of Control, 10: 203–209, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Vidyasagar. Control System Synthesis: A Factorization Approach. MIT Press, 1985.

    Google Scholar 

  14. P.P. Khargonekar and E. Sontag. On the relation between stable matrix fraction factorizations and regulable realizations of linear systems over rings. IEEE Transactions on Automatic Control, 27: 627–638, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  15. C.N. Nett, C.A. Jacobson, and M.J. Balas. A connection between state space and doubly coprime fractional representations. IEEE Transactions on Automatic Control, 29: 831–834, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Georgiou and M. Smith. Optimal robustness in the gap metric. IEEE Transactions on Automatic Control, 35: 673–686, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Glover and D. McFarlane. Robust stabilization of normalized coprime factor plant descriptions with Hoo-bounded uncertainty. IEEE Transactions on Automatic Control, 34: 821–830, 1989.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dullerud, G.E., Paganini, F. (2000). State Space System Theory. In: A Course in Robust Control Theory. Texts in Applied Mathematics, vol 36. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3290-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3290-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3189-4

  • Online ISBN: 978-1-4757-3290-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics