Skip to main content

Preliminaries in Finite Dimensional Space

  • Chapter
A Course in Robust Control Theory

Part of the book series: Texts in Applied Mathematics ((TAM,volume 36))

  • 3101 Accesses

Abstract

This chapter is centered around finite dimension vector spaces, mappings on them, and the convexity property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics, 1994.

    Google Scholar 

  2. L. El Ghaoui and S. Niculescu (eds.). Recent Advances on LMI Methods in Control. SIAM, 1999.

    Google Scholar 

  3. G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns Hopkins University Press, 1996.

    Google Scholar 

  4. W.H. Greub. Linear Algebra. Springer, 1981.

    Google Scholar 

  5. R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, 1991.

    Google Scholar 

  6. R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1995.

    Google Scholar 

  7. D.G. Luenberger. Optimization by Vector Space Methods. Wiley, 1969.

    Google Scholar 

  8. Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics, 1994.

    Google Scholar 

  9. R.T. Rockafellar. Convex Analysis. Princeton University Press, 1997.

    Google Scholar 

  10. G. Strang. Linear Algebra and its Applications. Academic Press, 1980.

    Google Scholar 

  11. L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38: 49–95, 1996.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dullerud, G.E., Paganini, F. (2000). Preliminaries in Finite Dimensional Space. In: A Course in Robust Control Theory. Texts in Applied Mathematics, vol 36. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3290-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3290-0_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3189-4

  • Online ISBN: 978-1-4757-3290-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics