Skip to main content

Part of the book series: Texts in Applied Mathematics ((TAM,volume 36))

  • 3085 Accesses

Abstract

We have arrived at the final chapter of this course. As with the preceding chapter our main objective is to acquire some familiarity with two new topics, and again our treatment will be of a survey nature. The areas we will consider are linear parameter varying systems, multidimensional systems, and linear time-varying (LTV) systems. In Chapter 10 we covered new analysis techniques and problems, and our aim in this chapter is the study of additional methods and results pertaining to synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and references

  1. W. M. Lu, K. Zhou, and J. C. Doyle. Stabilization of LFT systems. In Proc. IEEE Conference on Decision and Control, 1991.

    Google Scholar 

  2. A. Packard. Gain scheduling via linear fractional transformations. Systems and Control Letters, 22: 79–92, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  3. C.L. Beck and J. C. Doyle. A necessary and sufficient minimality condition for uncertain systems. IEEE Transactions on Automatic Control, 44: 1802–1813, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  4. C.L. Beck, J.C. Doyle, and K. Glover. Model reduction of multi-dimensional and uncertain systems. IEEE Transactions on Automatic Control, 41: 1466–1477, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Apkarian and P. Gahinet. A convex characterization of gain-scheduled Ho° controllers. IEEE Transactions on Automatic Control, 40: 853–864, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Wu, A. Packard, and G. Becker. Induced L2-norm control for LPV systems with bounded parameter variation rates. International Journal of Robust and Nonlinear Control, 6: 983–998, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Bamieh, F. Paganini, and M. Dahleh. Optimal control of distributed arrays with spatial invariance. In Robustness in Identification and Control; editors A. Garulli, A. Tesi, A. Vicino. Springer, 1999.

    Google Scholar 

  8. R. D’Andrea, G.E. Dullerud, and S. Lall. Convex L2 synthesis for multidimensional systems. In Proc. IEEE Conference on Decision and Control, 1998.

    Google Scholar 

  9. N. K. Bose. Multidimensional Systems: Theory and Applications. IEEE Press; distributor Wiley, 1979.

    Google Scholar 

  10. E.W. Kamen. Stabilization of linear spatially-distributed continuous-time and discrete-time systems. in Multdimensional Systems Theory; editor N.K. Bose, Kluwer, 1985.

    Google Scholar 

  11. G.E. Dullerud and S.G. Lall. A new approach to analysis and synthesis of time-varying systems. IEEE Transactions on Automatic Control, 44: 1486–1497, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  12. H.K. Khalil. Nonlinear Systems. Prentice-Hall, 1996.

    Google Scholar 

  13. M. Vidyasagar. Nonlinear Systems Analysis. Prentice-Hall, 1993.

    Google Scholar 

  14. R.M. Range. Holomorphic Functions and Integrable Representations in Several Complex Variables. Springer, 1986.

    Google Scholar 

  15. V.A. Yakubovich. A frequency theorem for the case in which the state and control spaces are Hilbert spaces with an application to some problems of synthesis of optimal controls. Sibirskii Mat. Zh.,15: 639–668, 1975. English translation in Siberian Mathematics Journal.

    Google Scholar 

  16. J.A. Ball, I. Gohberg, and M.A. Kaashoek. Nevanlinna-Pick interpolation for time-varying input-output maps: the discrete case. Operator Theory: Advances and Applications, Birkäuser, 56: 1–51, 1992.

    MathSciNet  Google Scholar 

  17. P.A. Iglesias. An entropy formula for time-varying discrete-time control systems. SIAM Journal of Control and Optimization, 34: 1691–1706, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Alpay, P. Dewilde, and H. Dym. Lossless inverse scattering and reproducing kernels for upper triangular operators. Operator Theory: Advances and Applications, Birkäuser, 47: 61–135, 1992.

    MathSciNet  Google Scholar 

  19. A. Feintuch. Robust Control Theory in Hilbert Space. Springer, 1998.

    Google Scholar 

  20. T. Basar and P. Bernhard. H.-Optimal Control and Related Mini-Max Design Problems: A Dynamic Game Approach. Birkhäuser, 1991.

    Google Scholar 

  21. M. Green and D.J.N. Limebeer. Linear Robust Control. Prentice Hall, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dullerud, G.E., Paganini, F. (2000). Further Topics: Synthesis. In: A Course in Robust Control Theory. Texts in Applied Mathematics, vol 36. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3290-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3290-0_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3189-4

  • Online ISBN: 978-1-4757-3290-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics