Skip to main content

Part of the book series: Texts in Applied Mathematics ((TAM,volume 36))

  • 3079 Accesses

Abstract

At this point we have achieved the major goals of our course — the detailed study of the topics in Chapters 1 through 9. This chapter and the next are devoted to broadening and deepening our background by considering a number of additional topics. Our approach will be that of a technical overview, stressing the main ideas and technical machinery, with a somewhat reduced emphasis on formal demonstrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and references

  1. B. Bamieh and J.B. Pearson Jr. The H2 problem for sampled-data systems. Systems and Control Letters, 19: 1–12, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  2. D.S. Bernstein and W. H. Haddad. LQG control with an H. performance bound: A Riccati equation approach. IEEE Transactions on Automatic Control, 34: 293–305, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. C. Doyle. Guaranteed margins for LQG regulators. IEEE Transactions on Automatic Control, 23: 756–757, 1978.

    Article  Google Scholar 

  4. J. C. Doyle, K. Glover, P. Khargonekar, and B. A. Francis. State-Space solutions to standard H2 and H, control problems. IEEE Transactions on Automatic Control, 34: 831–847, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. C. Doyle and G. Stein. Robustness with observers. IEEE Transactions on Automatic Control, 24: 607–611, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. C. Doyle and G. Stein. Multivariable feedback design: Concepts for a classical/modern synthesis. IEEE Transactions on Automatic Control, 26: 4–16, 1981.

    Article  MATH  Google Scholar 

  7. T. Iwasaki. Robust performance analysis for systems with norm-bounded time-varying structured uncertainty. In Proc. American Control Conference, 1994.

    Google Scholar 

  8. U. Jonsson and A. Rantzer. Optimization of integral quadratic constraints. In Recent Advances on LMI Methods in Control; editors L. El Ghaoui, S. Niculescu. SIAM, 1999.

    Google Scholar 

  9. P. Khargonekar and M. Rotea. Mixed H2/H c, control: A convex optimization approach. IEEE Transactions on Automatic Control, 36: 824–837, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Megretski and A. Rantzer. System analysis via integral quadratic constraints. IEEE Transactions on Automatic Control, 42: 819–830, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Megretski and S. Treil. Power distribution inequalities in optimization and robustness of uncertain systems. Jour. Math. Sys., Est. l Control, 3: 301–319, 1993.

    MathSciNet  Google Scholar 

  12. F. Paganini. Sets and Constraints in the Analysis of Uncertain Systems. PhD thesis, California Institute of Technology, 1996.

    Google Scholar 

  13. F. Paganini. Convex methods for robust H2 analysis of continuous time systems. IEEE Transactions on Automatic Control, 44: 239–252, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Paganini. Frequency domain conditions for robust H2 performance. IEEE Transactions on Automatic Control, 44: 38–49, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Paganini and E. Feron. LMI methods for robust H2 analysis: a survey with comparisons. In Recent Advances on LMI Methods in Control; editors L. El Ghaoui and S. Niculescu. SIAM, 1999.

    Google Scholar 

  16. V. M. Popov. On the absolute stability of nonlinear systems of automatic control. Automation and Remote Control, 22: 857–875, 1961.

    MathSciNet  Google Scholar 

  17. A. Rantzer and A. Megretski. Tutorial on integral quadratic constraints. 1999. Preprint.

    Google Scholar 

  18. A. Rantzer and A. Megretskii. System analysis via integral quadratic constraints. In Proc. IEEE Conference on Decision and Control, 1994.

    Google Scholar 

  19. M.G. Safonov. Stability and Robustness of Multivariable Feedback Systems. MIT Press, 1980.

    Google Scholar 

  20. C. Scherer, P. Gahinet, and M. Chilali. Multiobjective output-feedback control via LMI-optimization. IEEE Transactions on Automatic Control, 42: 896–911, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Stein and M. Athans. The LQG/LTR. procedure for multivariable feedback control design. IEEE Transactions on Automatic Control, 32: 105–114, 1987.

    Article  MATH  Google Scholar 

  22. A. A. Stoorvogel. The robust H2 control problem: A worst-case design. IEEE Transactions on Automatic Control, 38: 1358–1370, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Sznaier and J. Tierno. Is set modeling of white noise a good tool for robust H2 analysis? In Proc. IEEE Conference on Decision and Control, 1998.

    Google Scholar 

  24. V. A. Yakubovich. Frequency conditions for the absolute stability of control systems with several nonlinear or linear nonstationary units. Automat. Telemech., pages 5–30, 1967.

    Google Scholar 

  25. V. A. Yakubovich. S-procedure in nonlinear control theory. Vestnik Leningrad Univ., pages 62–77, 1971. In Russian. English translation in Vestnik Leningrad Univ. Math., (1977), 73–93.

    Google Scholar 

  26. K.Y. Yang, S. R. Hall, and E. Feron. Robust H2 control. In Recent Advances on LMI Methods in Control; editors L. El Ghaoui, S. Niculescu. SIAM, 1999.

    Google Scholar 

  27. G. Zames. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on Automatic Control, 26: 301–320, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  28. K. Zhou, K. Glover, B. Bodenheimer, and J.C. Doyle. Mixed 112 and Hoe performance objectives I: Robust performance analysis. IEEE Transactions on Automatic Control, 39: 1564–1574, 1994.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dullerud, G.E., Paganini, F. (2000). Further Topics: Analysis. In: A Course in Robust Control Theory. Texts in Applied Mathematics, vol 36. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3290-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3290-0_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3189-4

  • Online ISBN: 978-1-4757-3290-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics