Skip to main content

Mathematical Programming in Engineering Mechanics: Some Current Problems

  • Chapter

Part of the book series: Applied Optimization ((APOP,volume 50))

Abstract

The application of mathematical programming methods in a variety of practically motivated engineering mechanics problems provides a fertile field for interdisciplinary interaction between the mathematical programming and engineering communities. This paper briefly outlines several topical problems in engineering mechanics involving the use of mathematical programming techniques. The intention is to attract the attention of mathematical programming experts to some of the still open questions in the intersection of the two fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.Z. Cohn and G. Maier (eds.), Engineering Plasticity by Mathematical Programming, NATO Advanced Study Institute, University of Waterloo 1977, Pergamon Press, New York, 1979.

    MATH  Google Scholar 

  2. G. Maier and J. Munro, Mathematical programming applications to engineering plastic analysis, Applied Mechanics Reviews 35, 1982, 1631–1643.

    Google Scholar 

  3. G. Maier and D. Lloyd Smith, Update to “Mathematical programming applications to engineering plastic analysis”, ASME Applied Mechanics Update, 1985, 377–383.

    Google Scholar 

  4. M.C. Ferris and J.S. Pang, Engineering and economic applications of complementarity problems, SIAM Review 39, 1997, 669–713.

    Article  MathSciNet  MATH  Google Scholar 

  5. M.C. Ferris and J.S. Pang (eds.), Complementarity and Variational Problems: State of the Art, SIAM, Philadelphia, Pennsylvania, 1997.

    MATH  Google Scholar 

  6. V. Carvelli, Limit and Shakedown Analysis of Three-Dimensional Structures and Periodic Heterogeneous Materials, Ph.D. Thesis, Po-litecnico di Milano, 1999.

    Google Scholar 

  7. Y.G. Zhang and M.W. Lu, An algorithm for plastic limit analysis, Computer Methods in Applied Mechanics and Engineering 126, 1995, 333–341.

    Article  Google Scholar 

  8. J. Lubliner, Plasticity Theory, Macmillan Publishing Company, 1990.

    MATH  Google Scholar 

  9. A. Capsoni and L. Corradi, A finite element formulation of the rigid-plastic limit analysis problem, International Journal for Numerical Methods in Engineering 40, 1997, 2063–2086.

    Article  MATH  Google Scholar 

  10. A. Corigliano, G. Maier and S. Pycko, Dynamic shakedown analysis and bounds for elastoplastic structures with nonassociative, internal variable constitutive laws, International Journal of Solids and Structures 32, 1995, 3145–3166.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Polizzotto, A unified treatment of shakedown theory and related bounding techniques, Solid Mechanics Archives 7, 1982, 19–75.

    MATH  Google Scholar 

  12. F. Tin-Loi, Deflection bounding at shakedown, Proceedings ASCE, Journal of Structural Division 106, 1980, 1209–1215.

    Google Scholar 

  13. C. Comi, G. Maier and U. Perego, Generalized variable finite element modeling and extremum theorems in stepwise holonomic elastoplasticity with internal variables, Computer Methods in Applied Mechanics and Engineering 96, 1992, 213–237.

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Kaneko, On some recent engineering applications of complementarity problems, Mathematical Programming Study 17, 1982, 111–125.

    Article  MATH  Google Scholar 

  15. G. Maier, A matrix structural theory of piecewise linear plasticity with interacting yield planes, Meccanica 5, 1970, 55–66.

    Google Scholar 

  16. G. Cocchetti and G. Maier, Static shakedown theorems in piecewise linearized poroplasticity, Archive of Applied Mechanics 68, 1998, 651–661.

    Article  MATH  Google Scholar 

  17. R.W. Lewis and B.A. Schrefler, The Finite Element Method in the Deformation and Consolidation of Porous Media, John Wiley & Sons, Chichester, UK, 1998.

    MATH  Google Scholar 

  18. G. Bolzon, D. Ghilotti and G. Maier, Parameter identification of the cohesive crack model, in Material Identification Using Mixed Numerical Experimental Methods (H. Sol and C.W.J. Oomens, eds.), Dordrecht, Kluwer Academic Publishers, 1997, pp. 213–222.

    Chapter  Google Scholar 

  19. G. Bolzon, G. Maier and F. Tin-Loi, On multiplicity of solutions in quasi-brittle fracture computations, Computational Mechanics 19, 1997, 511–516.

    Article  MATH  Google Scholar 

  20. G. Bolzon, G. Maier and G. Novati, Some aspects of quasi-brittle fracture analysis as a linear complementarity problem, in Fracture and Damage in Quasibrittle Structures (Z.P. Bažant, Z. Bittnar, M. Jirásek and J. Mazars, eds.), E&FN Spon, London, 1994, pp. 159–174.

    Google Scholar 

  21. G. Bolzon, G. Maier and F. Tin-Loi, F. Holonomic and nonholo-nomic simulations of quasi-brittle fracture: a comparative study of mathematical programming approaches, in Fracture Mechanics of Concrete Structures (F.H. Wittmann, ed.), Aedificatio Publishers, Freiburg, 1995, pp. 885–898.

    Google Scholar 

  22. F. Tin-Loi and M.C. Ferris, Holonomic analysis of quasibrittle fracture with nonlinear softening, in Advances in Fracture Research (B.L. Karihaloo, Y.W. Mai, M.I. Ripley and R.O. Ritchie, eds.), Pergamon Press, 1997, pp. 2183–2190.

    Google Scholar 

  23. G. Bolzon and G. Maier, Identification of cohesive crack models for concrete on the basis of three-point-bending tests, in Computational Modelling of Concrete Structures (R. de Borst, N. Bicanic, H. Mang and G. Meschke, eds.), Balkema, Rotterdam, 1998, pp. 301–310

    Google Scholar 

  24. R.W. Cottle, J.S. Pang and R.E. Stone, The Linear Complementarity Problem, Academic Press, 1992.

    MATH  Google Scholar 

  25. Z. Cen and G. Maier, Bifurcations and instabilities in fracture of cohesive-softening structures: a boundary element analysis, Fatigue and Fracture of Engineering Materials and Structures 15, 1992, 911–928.

    Article  Google Scholar 

  26. G. Maier, G. Novati and Z. Cen, Symmetric Galerkin boundary element method for quasi-brittle fracture and frictional contact problems, Computational Mechanics 13, 1993, 74–89.

    MATH  Google Scholar 

  27. G. Bolzon, Hybrid finite element approach to quasi-brittle fracture, Computers and Structures 60, 1996, 733–741.

    Article  MATH  Google Scholar 

  28. J.J. Judice and G. Mitra, An enumerative method for the solution of linear complementarity problems, European Journal of Operations Research 36, 1988, 122–128.

    Article  MathSciNet  MATH  Google Scholar 

  29. S.P. Dirkse and M.C. Ferris, The PATH solver: a non-monotone stabilization scheme for mixed complementarity problems, Optimization Methods & Soßware 5, 1995, 123–156.

    Article  Google Scholar 

  30. A. Brooke, D. Kendrick, A. Meeraus and R. Raman, GAMS: A User’s Guide, Gams Development Corporation, Washington, DC 20007, 1998.

    Google Scholar 

  31. M.C. Ferris and T.S. Munson, Complementarity problems in GAMS and the PATH solver, Journal of Economic Dynamics and Control 24, 2000, 165–188.

    Article  MathSciNet  MATH  Google Scholar 

  32. Z.Q. Luo, J.S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge University Press, 1996.

    Book  Google Scholar 

  33. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989.

    MATH  Google Scholar 

  34. G. Maier, Inverse problem in engineering plasticity: a quadratic programming approach, Academia Nazionale dei Lincei, Serie VIII, vol LXX, 1981, 203–209.

    Google Scholar 

  35. G. Maier, F. Giannessi and A. Nappi, Indirect identification of yield limits by mathematical programming, Engineering Structures 4, 1982, 86–98.

    Article  Google Scholar 

  36. A. Nappi, System identification for yield limits and hardening moduli in discrete elastic-plastic structures by nonlinear programming, Applied Mathematical Modelling 6, 1982, 441–448.

    Article  MATH  Google Scholar 

  37. H. Jiang, D. Ralph and F. Tin-Loi, Identification of yield limits as a mathematical program with equilibrium constraints, in Proceedings, 15th Australasian Conference on the Mechanics of Structures and Materials (ACMSM15) (R.H. Grzebieta, R. Al-Mahaidi and J.L. Wilson, eds.), Balkema, 1997, pp. 399–404.

    Google Scholar 

  38. D. Ralph, A piecewise sequential quadratic programming method for mathematical programs with linear complementarity constraints, in Proceedings, 7th Conference on Computational Tech-niques and Applications (CTAC95) (A. Easton and R. May, eds.), World Scientific Press, 1995, pp. 663–668.

    Google Scholar 

  39. F. Tin-Loi and M.C. Ferris, A simple mathematical programming method to a structural identification problem, in Proceedings, 7th International Conference on Computing in Civil and Building Engineering (ICCCBE-VII) (C.K. Choi, C.B. Yun and H.G. Kwak, eds.), Techno-Press, 1997, pp. 511–518.

    Google Scholar 

  40. F. Facchinei, H. Jiang and L. Qi, A smoothing method for mathematical programs with equilibrium constraints, Mathematical Programming 85, 1999, 107–134.

    Article  MathSciNet  MATH  Google Scholar 

  41. C. Kanzow, Some noninterior continuation methods for linear complementarity problems, SIAM Journal on Matrix Analysis and Applications 17, 1996, 851–868.

    Article  MathSciNet  MATH  Google Scholar 

  42. M.C. Ferris and F. Tin-Loi, Nonlinear programming approach for a class of inverse problems in elastoplasticity, Structural Engineering and Mechanics 6, 1998, 857–870.

    Google Scholar 

  43. H. Jiang and D. Ralph, Smooth SQP methods for mathematical programs with nonlinear complementarity constraints, Research Report, Department of Mathematics and Statistics, The University of Melbourne, 1998.

    Google Scholar 

  44. L.D. Davis, Handbook of Genetic Algorithms, Van Nostrand Rein-hold, New York, 1991.

    Google Scholar 

  45. S. Bittanti, G. Maier and Nappi, Inverse problems in structural elastoplasticity: a Kaiman filter approach, in Plasticity Today (A. Sawczuk and G. Bianchi, eds.), Elsevier Applied Science Publishers, London, 1993, pp. 311–329.

    Google Scholar 

  46. S.P. Dirkse and M.C. Ferris, Modeling and solution environments for MPEC: GAMS & MATLAB, in Reformulation: Nons-mooth, Piecewise Smooth, Semismooth and Smoothing Methods (M. Fukushima and L. Qi, eds.), Kluwer Academic Publishers, 1999, pp. 127–148.

    Google Scholar 

  47. A. Drud, CONOPT — a large-scale GRG code, ORSA Journal on Computing 6, 1994, 207–216.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maier, G., Bolzon, G., Tin-Loi, F. (2001). Mathematical Programming in Engineering Mechanics: Some Current Problems. In: Ferris, M.C., Mangasarian, O.L., Pang, JS. (eds) Complementarity: Applications, Algorithms and Extensions. Applied Optimization, vol 50. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3279-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3279-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4847-2

  • Online ISBN: 978-1-4757-3279-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics