Advertisement

Quantum Chemical Reactivity: Beyond the Study of Small Molecules

  • J. M. Bofill
  • J. M. Anglada
  • E. Besalú
  • R. Crehuet
Part of the Mathematical and Computational Chemistry book series (MACC)

Abstract

It is well known the paramount importance attached to the quantum mechanical methods related to the transition states (TS) or minimal energy surfaces localisation. In this field, many efforts are done to apply such techniques to medium, and large, sized molecules. The main goal is to obtain molecular descriptions of such systems within the highest possible level of accuracy.

Keywords

Potential Energy Surface Hessian Matrix Gaussian Wave Packet Quadratic Expansion Adiabatic Potential Energy Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Anglada, E. Besalû, J. M. Bofill, and R. Crehuet, J. Comput. Chem. 20, 1112 (1999).CrossRefGoogle Scholar
  2. 2.
    L. Salem, Electrons in Chemical Reactions: First Principles, Wiley, New York (1982).Google Scholar
  3. 3.
    M. G. Evans and E. Warhurst, Trans. Faraday Soc. 34, 614 (1938).CrossRefGoogle Scholar
  4. 4.
    M. G. Evans, Trans. Faraday Soc. 35, 824 (1939).CrossRefGoogle Scholar
  5. 5.
    F. Bernardi, M. A. Robb, H. B. Schlegel, and G. Tonachini, J. Am. Chem. Soc. 106, 1198 (1984).CrossRefGoogle Scholar
  6. 6.
    F. Bernardi, M. Olivucci, M. A. Robb, and G. Tonachini, J. Am. Chem. Soc, 108, 1408 (1986).CrossRefGoogle Scholar
  7. 7.
    F. Bernardi, M. Olivucci, J. J. W. McDouall, and M. A. Robb, J. Am. Chem. Soc. 109, 544 (1987).CrossRefGoogle Scholar
  8. 8.
    F. Bernardi and M. A. Robb, Adv. Chem. Phys. 67, 155 (1987).CrossRefGoogle Scholar
  9. 9.
    J. J. W. McDouall, M. A. Robb, and F. Bernardi, Chem. Phys. Lett. 129, 595 (1986).CrossRefGoogle Scholar
  10. 10.
    F. Bernardi, J. J. W. McDouall, and M. A. Robb, J. Comput. Chem. 8, 296 (1987).CrossRefGoogle Scholar
  11. 11.
    F. Jensen, J. Am. Chem. Soc. 114, 1596 (1992).CrossRefGoogle Scholar
  12. 12.
    F. Jensen, J. Comput. Chem. 15, 1199 (1994).CrossRefGoogle Scholar
  13. 13.
    K. Ruedenberg and J.-Q. Sun, J. Chem. Phys. 101, 2168 (1994).CrossRefGoogle Scholar
  14. A. Pross and S. S. Shaik, Tetrahedron Lett. 23, 5467 (1982).Google Scholar
  15. A. Pross and S. S. Shaik, Acc. Chem. Res. 16, 363 (1983).CrossRefGoogle Scholar
  16. 14.
    S. S. Shaik, Prog. Phys. Org. Chem. 15, 197 (1985).CrossRefGoogle Scholar
  17. 14a.
    A. Pross, Adv. Org. Chem. 21, 99 (1985).Google Scholar
  18. 15.
    S. S. Shaik, Pure Appl. Chem. 63, 193 (1991).CrossRefGoogle Scholar
  19. 16.
    S. S. Shaik, H. B. Schlegel, and S. Wolfe, Theoretical Aspects of Physical Organic Chemistry. The S N2 Mechanism, Wiley, New York (1992).Google Scholar
  20. 16a.
    A. Warshel and R. M. Weiss, J. Am. Chem. Soc. 102, 6218 (1980).CrossRefGoogle Scholar
  21. 16b.
    A. Warshel, Biochemistry 20, 3167 (1981).CrossRefGoogle Scholar
  22. 16c.
    A. Warshel, Acc. Chem. Res. 14, 284 (1981).CrossRefGoogle Scholar
  23. 17.
    J.-K. Hwang, G. King, S. Creighton, and A. Warshel, J. Am. Chem. Soc. 110, 5297 (1988).CrossRefGoogle Scholar
  24. 18.
    J. Aqvist and A. Warshel, Biochemistry 28, 4680 (1989).CrossRefGoogle Scholar
  25. 18a.
    A. Warshel, Computer Modeling of Chemical Reactions in Enzymes and Solutions, John Wiley, New York (1991).Google Scholar
  26. 19.
    J. Aqvist and A. Warshel, Chem. Rev. 93, 2523 (1993).CrossRefGoogle Scholar
  27. 20.
    H. J. Kim and J. T. Hynes, J. Am. Chem. Soc. 114, 10508 (1992).CrossRefGoogle Scholar
  28. 21.
    P.-O. Löwdin, J. Math. Phys. 3, 969 (1962).CrossRefGoogle Scholar
  29. 22.
    P.-O. Löwdin, J. Math. Phys. 3, 1171 (1962).CrossRefGoogle Scholar
  30. 23.
    Y.-T. Chang and W. H. Miller, J. Phys. Chem. 94, 5884 (1990).CrossRefGoogle Scholar
  31. 24.
    J. M. Anglada, E. Besalú, J. M. Bofill, and R. Crehuet, J. Comput. Chem. 20, 1130 (1999).CrossRefGoogle Scholar
  32. 24a.
    B. J. Cerjan and W. H. Miller, J. Chem. Phys. 75, 2800 (1981).CrossRefGoogle Scholar
  33. 25.
    J. Simons, P. Jørgensen, H. Taylor, and J. Ozment, J. Phys. Chem. 87, 2745 (1983).CrossRefGoogle Scholar
  34. 25a.
    C. O’Neal, H. Taylor, and J. Simons, J. Phys. Chem. 88, 1510 (1984).CrossRefGoogle Scholar
  35. 25b.
    A. Banerjee, N. Adams, J. Simons, and R. Shepard, J. Phys. Chem. 89, 52 (1985).CrossRefGoogle Scholar
  36. 26.
    H. Taylor and J. Simons, J. Phys. Chem. 89, 684 (1985).CrossRefGoogle Scholar
  37. 27.
    J. Baker, J. Comput. Chem. 7, 385 (1986).CrossRefGoogle Scholar
  38. 28.
    J. Nichols, H. Taylor, P. Schmidt, and J. Simons, J. Chem. Phys. 92, 340 (1990).CrossRefGoogle Scholar
  39. 29.
    T. Helgaker, Chem. Phys. Lett. 182, 503 (1991).CrossRefGoogle Scholar
  40. 30.
    P. Culot, G. Dive, V. H. Nguyen, and J. M. Ghuysen, Theor. Chim. Acta 82, 189 (1992).CrossRefGoogle Scholar
  41. 31.
    J. M. Anglada and J. M. Bofill, lnr J. Quantum Chem. 62, 153 (1997).CrossRefGoogle Scholar
  42. 31a.
    D. Besalú and J. M. Bofill, Theor. Chem. Acc.100, 265 (1998).CrossRefGoogle Scholar
  43. 32.
    H. B. Schlegel, Adv. Chem. Phys. 67, 249 (1987).CrossRefGoogle Scholar
  44. 33.
    H. B. Schlegel, in Modern Electronic Structure Theory, D. R. Yarkony (ed.), World Scientific, Singapore (1995).Google Scholar
  45. 34.
    J. M. Anglada, E. Besalú, J. M. Bofill, and J. Rubio, J. Math. Chem. 25, 85 (1999).CrossRefGoogle Scholar
  46. 34a.
    E. Besalú and R. Carbó-Dorca, J. Math. Chem. 21, 395 (1997).CrossRefGoogle Scholar
  47. 34b.
    F. Besalú and J. M. Bofill, J. Comput. Chem. 19, 1777 (1998).CrossRefGoogle Scholar
  48. 35.
    J. M. Anglada, E. Besalú, and J. M. Bofill, Theor. Chem. Acc. 103, 163 (1999).CrossRefGoogle Scholar
  49. 36.
    M. A. Robb, personal comunication.Google Scholar
  50. 37.
    P. A. M. Dirac, The Principles of Quantum Mechanics, Claredon Press, Oxford (1958).Google Scholar
  51. 38.
    E. J. Heller, J. Chem. Phys. 62, 1544 (1975).CrossRefGoogle Scholar
  52. 39.
    D. Neuhauser, J. Chem. Phys. 93, 2611 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • J. M. Bofill
    • 1
  • J. M. Anglada
    • 2
  • E. Besalú
    • 3
  • R. Crehuet
    • 2
  1. 1.Departament de Química Orgànica i Centre Especial de Recerca en Química TeòricaUniversitat de BarcelonaBarcelona, CatalunyaSpain
  2. 2.Institut d’Investigacions Químiques i AmbientalsC.I.D. - C.S.I.C.Barcelona, CatalunyaSpain
  3. 3.Institut de Química Computacional i Departament de QuímicaUniversitat de Girona, Campus de MontiliviGirona, CatalunyaSpain

Personalised recommendations