Advertisement

Confronting modern valence bond theory with momentum-space quantum similarity and with pair density analysis

  • David L. Cooper
  • Neil L. Allan
  • Peter B. Karadakov
Part of the Mathematical and Computational Chemistry book series (MACC)

Abstract

The ever increasing level of sophistication of modern quantum chemical computations tends to make it more and more difficult to find direct links with the various classical models still employed by most chemists to visualize and to interpret molecular electronic structure. This has led to the development of a wide variety of schemes for the direct analysis of total wavefunctions and, especially, of total electron densities. Running against the general trend is the renaissance of valence bond (VB) theory, which aims to provide numerical accuracy with models that are relatively simple to interpret directly. This is especially true of modern developments such as spin-coupled theory [1–3], which combine useful accuracy with conceptually simple descriptions of the behaviour of correlated electrons. In the present work, we confront descriptions inferred directly from spin-coupled calculations with momentum-space quantum similarity indices for electron densities and with pair density analyses of total wavefunctions. By way of examples, we consider two gas-phase pericyclic reactions, namely the parent Diels-Alder process and the disrotatory ring-opening of cyclohexadiene. Additionally, we use the PF4CH3 molecule as an example to examine the nature of the bonding to hypercoordinate main group atoms.

Keywords

Minimum Energy Path Pair Density Total Electron Density Main Group Element Transition State Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. L. Cooper, J. Gerratt and M. Raimondi, Adv. in Chem. Phys. 69, 319 (1987)CrossRefGoogle Scholar
  2. 1a.
    D. L. Cooper, J. Gerratt and M. Raimondi, Int. Rev. Phys. Chem. 7, 59 (1988)CrossRefGoogle Scholar
  3. 1b.
    J. Gerratt, D. L. Cooper and M. Raimondi, The spin-coupled valence bond theory of molecular electronic structure, in D. J. Klein and N. Trinajstić (eds) Valence Bond Theory and Chemical Structure (Elsevier, Amsterdam, 1990).Google Scholar
  4. 2.
    D. L. Cooper, J. Gerratt and M. Raimondi, Chem. Rev. 91, 929 (1991).CrossRefGoogle Scholar
  5. 3.
    J. Gerratt, D. L. Cooper, P. B. Karadakov and M. Raimondi, Chem. Soc. Rev. 26, 87 (1997)CrossRefGoogle Scholar
  6. 3a.
    J. Gerratt, D. L. Cooper, P. B. Karadakov and M. Raimondi, in Encyclopaedia of Computational Chemistry (John Wiley, 1998); pp 2672–88.Google Scholar
  7. 4.
    W. Heitler and F. London, Z Phys. 44; 455 (1927).CrossRefGoogle Scholar
  8. 5.
    A. Coulson and I. Fischer, Phil. Mag. 40, 386 (1949).Google Scholar
  9. 6.
    J. Gerratt, Adv. Atom. Mol. Phys. 7, 141 (1971).CrossRefGoogle Scholar
  10. 7.
    J. Gerratt and M. Raimondi, Proc. Roy. Soc. (Lond.) Ser. A 371, 525 (1980).CrossRefGoogle Scholar
  11. 8.
    R. Pauncz, Spin Eigenfunctions (Plenum, New York, 1979).CrossRefGoogle Scholar
  12. 9.
    M. Raimondi, M. Sironi, J. Gerratt and D. L. Cooper, Int. J. Quant. Chem. 60, 225 (1996)CrossRefGoogle Scholar
  13. 9a.
    F. Penotti, Int. J. Quant. Chem. 59, 349 (1996)CrossRefGoogle Scholar
  14. 9b.
    D. L. Cooper, T. Thorsteinsson and J. Gerratt, Int. J. Quant. Chem. 65, 439 (1997)CrossRefGoogle Scholar
  15. 9c.
    N. J. Clarke, M. Raimondi, M. Sironi, J. Gerratt, D. L. Cooper, Theor. Chem. Acc. 99, 8 (1998).CrossRefGoogle Scholar
  16. 10.
    L. Cooper, R., Ponec, T. Thorsteinsson and G. Raos, Int. J. Quant. Chem. 57, 501 (1996).CrossRefGoogle Scholar
  17. 11.
    R. Ponec and M. Strnad, Int. J. Quant. Chem. 50, 43 (1994).CrossRefGoogle Scholar
  18. 12.
    L. Cooper, S. D. Loades and N. L. Allan, J. Mol. Struct. (THEOCHEM) 229, 189 (1991).CrossRefGoogle Scholar
  19. 13.
    J. Clark, H. L. Schmider and V. H. Smith, On hybrids in momentum space, in Z. B. Maksić and W. J. Orville-Thomas (eds) Pauling’s Legacy — Modern Modelling of the Chemical Bond (Elsevier, Amsterdam, 1999).Google Scholar
  20. 14.
    L. Cooper and N. L. Allan, J. Chem. Soc. Faraday Trans. Z 83, 449 (1987).CrossRefGoogle Scholar
  21. 15.
    L. Cooper and N. L. Allan, J. Comput.-Aided Mol. Design 3, 253 (1989)CrossRefGoogle Scholar
  22. 15m.
    D. L. Cooper and N. L. Allan, J. Am. Chem. Soc. 114, 4773 (1992)CrossRefGoogle Scholar
  23. 15p.
    N. L. Allan and D. L. Cooper, J. Chem. Inf. and Comp. Sci. 32, 587 (1992);CrossRefGoogle Scholar
  24. 15a.
    D. L. Cooper, K. A. Mort, N. L. Allan, D. Kinchington and C. McGuigan, J. Am. Chem. Soc. 115, 12615 (1993)CrossRefGoogle Scholar
  25. 15b.
    N. L. Allan and D. L. Cooper, Topics in Curr. Chem. 173, 85 (1995)CrossRefGoogle Scholar
  26. 15c.
    D. L. Cooper and N. L. Allan, Molecular similarity and momentum space, in R. Carbó (ed.) Molecular Similarity and Reactivity: From Quantum Chemical to Phenomenological Approaches (Kluwer, Dordrecht, 1995)Google Scholar
  27. 15d.
    P. T. Measures, K. A. Mort, N. L. Allan and D L. Cooper, J. Comput. Aided Mol. Design 9, 331 (1995);CrossRefGoogle Scholar
  28. 15e.
    P. T. Measures, N. L. Allan and D. L. Cooper, Adv. in Molec. Similarity 1, 61 (1996)CrossRefGoogle Scholar
  29. 15f.
    P. T. Measures, K. A. Mort, D. L. Cooper and N. L. Allan, J. Mol. Struct. (THEOCHEM) 423, 113 (1998)CrossRefGoogle Scholar
  30. 15g.
    N. L. Allan and D. L. Cooper, J. Math. Chem. 23, 51 (1998).CrossRefGoogle Scholar
  31. 16.
    P. B. Karadakov, D. L. Cooper and J. Gerratt, J. Am. Chem. Soc. 120, 3975 (1998).CrossRefGoogle Scholar
  32. 17.
    P. B. Karadakov, D. L. Cooper and J. Gerratt, Theor. Chem. Acc. 100, 222 (1998).CrossRefGoogle Scholar
  33. 18.
    P. B. Karadakov, D. L. Cooper, T. Thorsteinsson and J. Gerratt, in A. Hernández-Laguna, J. Maruani, R. McWeeny and S. Wilson (eds) Quantum Systems in Chemistry and Physics. Volume 1: Basic problems and models systems. (Kluwer, Dordrecht, 2000).Google Scholar
  34. 19.
    See, for example: P. J. Hay, J. Am. Chem. Soc. 99, 1003 (1977)CrossRefGoogle Scholar
  35. 19a.
    H. Wallmeier and W. Kutzelnigg, J. Am. Chem. Soc. 101, 2804 (1979)CrossRefGoogle Scholar
  36. 19b.
    W. Kutzelnigg, Angew. Chem., Int. Ed. Engl. 23, 272 (1984)CrossRefGoogle Scholar
  37. 19d.
    E. Magnusson and H. F. Schaefer, J. Chem. Phys. 83, 5721 (1985)CrossRefGoogle Scholar
  38. 19e.
    A. E. Reed and F. Weinhold, J. Am. Chem. Soc. 108, 3586 (1986)CrossRefGoogle Scholar
  39. 19c.
    C. H. Patterson and R. P. Messmer, J. Am. Chem. Soc. 111, 8059 (1989)CrossRefGoogle Scholar
  40. 19g.
    C. H. Patterson and R. P. Messmer, J. Am. Chem. Soc. 112, 4138 (1990)CrossRefGoogle Scholar
  41. 19f.
    A. E. Reed and P. v. R. Schleyer, J. Am. Chem. Soc. 112, 1434 (1990)CrossRefGoogle Scholar
  42. 19h.
    E. Magnusson, J. Am. Chem. Soc. 112, 7940 (1990);CrossRefGoogle Scholar
  43. 19l.
    E. Magnusson, J. Am. Chem. Soc. 115, 1051 (1993)CrossRefGoogle Scholar
  44. 19m.
    R. P. Messmer, J. Am. Chem. Soc. 113, 433 (1991)CrossRefGoogle Scholar
  45. 19v.
    M. Häser, J. Am. Chem. Soc. 118, 7311 (1996).CrossRefGoogle Scholar
  46. 20.
    L. Cooper, T. P. Cunningham, J. Gerratt, P. B. Karadakov and M. Raimondi, J. Am. Chem. Soc. 116, 4414 (1994).CrossRefGoogle Scholar
  47. 21.
    T. P. Cunningham, D. L. Cooper, J. Gerratt, P. B. Karadakov and M. Raimondi, lnt. J. Quant. Chem. 60, 399 (1996).Google Scholar
  48. 22.
    L. Cooper, J. Gerratt, M. Raimondi and S. C. Wright, Chem. Phys. Leu. 138, 296 (1987)CrossRefGoogle Scholar
  49. 22a.
    D. L. Cooper, J. Gerratt and M. Raimondi, J. Chem. Soc. Perkin Trans. 2, 1187 (1989)Google Scholar
  50. 22b.
    T. Thorsteinsson, D. L. Cooper, J. Gerratt, P. B. Karadakov and M. Raimondi, Theor. Chim. Acta 93, 343 (1996)CrossRefGoogle Scholar
  51. 22c.
    T. P. Cunningham, D. L. Cooper, J. Gerratt, P. B. Karadakov and M. Raimondi, J. Chem. Soc. Faraday Trans. 93, 2247 (1997)CrossRefGoogle Scholar
  52. 22d.
    D. L. Cooper, J. Gerratt and M. Raimondi, Hypercoordinate bonding to main group elements: the spincoupled point of view, in Z. B. Maksić and W. J. Orville-Thomas (eds) Pauling’s Legacy: Modern Modelling of the Chemical Bond (Elsevier, Amsterdam, 1999); D. L. Cooper, to be published.Google Scholar
  53. 23.
    J. Pipek and P. G. Mezey, J. Chem. Phys. 90, 4916 (1989).CrossRefGoogle Scholar
  54. 24.
    Raos, S. J. McNicholas, J. Gerratt, D. L. Cooper and P. B. Karadakov, J. Phys. Chem. B 101, 6688 (1997)CrossRefGoogle Scholar
  55. 24a.
    B. Friis-Jensen, D. L. Cooper, S. Rettrup and P. B. Karadakov, J. Chem. Soc. Faraday Trans. 94, 3301 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • David L. Cooper
    • 1
  • Neil L. Allan
    • 2
  • Peter B. Karadakov
    • 3
  1. 1.Department of ChemistryUniversity of LiverpoolLiverpoolUK
  2. 2.School of ChemistryUniversity of BristolBristolUK
  3. 3.Department of ChemistryUniversity of SurreyGuildford SurreyUK

Personalised recommendations