Dynamic Plasticity

  • J. Chakrabarty
Part of the Mechanical Engineering Series book series (MES)


In this chapter we shall be concerned with the class of problems in which the plastic deformation is so rapid that the inertia effects cannot be disregarded. Problems of dynamic plasticity arise in the high-velocity forming of metals, penetration of high-speed projectiles into fixed targets, enlargement of cavities by underground explosion, and the design of crash barriers related to collisions, to name only a few. The rate of loading and the size of the components are usually such that the deformation process can be described in terms of the propagation of elastic/plastic waves. However, simplified theories which disregard the wave propagation phenomenon are generally capable of providing useful information for practical purposes. In the case of structural members subjected to impact loading, the mode of plastic deformation can be most conveniently represented by the existence of discrete yield hinges that rapidly move away from the point of loading. The concept of moving yield hinges is a useful device for the dynamic analysis of structures.


Wave Front Circular Plate Plastic Hinge Strain Rate Effect Central Deflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamson, G.R. and Goodier, J.N. (1966), Dynamic Flexural Buckling of Thin Rods Within an Axial Plastic Compressive Wave, J. Appl. Mech, 33, 241.CrossRefGoogle Scholar
  2. Abramowicz, W. and Jones, N. (1984), Dynamic Axial Crushing of Circular Tubes, Int. J. Impact Engng., 2, 263.CrossRefGoogle Scholar
  3. Aizawa, T., Murata, M. and Suzuki, H. (1990), Electromagnetic Tube Bulging by the Direct Electrode Contact Method and the Solenoidal Coil Method, Proc. 3rd Int. Conf. Technol. Plasticity, Kyoto, Japan, p. 1593.Google Scholar
  4. Al-Hassani, S.T.S. and Johnson, W. (1969), The Dynamics of the Fragmentation Process for Spherical Bombs, Int. J. Mech. Sci., 11, 811.CrossRefGoogle Scholar
  5. Alter, B.E.K. and Curtis, C.W. (1956), The Effect of Strain Rate on the Propagation of a Plastic Strain Pulse Along a Lead Bar, J. Appl. Mech., 27, 1079.Google Scholar
  6. Appleby, E.J. (1964), The Dynamic Viscoplastic Expansion of a Cylindrical Tube, J. Appl. Mech., 31, 654.MathSciNetCrossRefGoogle Scholar
  7. Apsden, R.J. and Campbell, J.D. (1966), The Effect of Loading Rate on the Elastic-Plastic Flexure of Steel Beams, Proc. Roy. Soc. London Ser. A, 290, 266.CrossRefGoogle Scholar
  8. Backman, M.E. and Goldsmith, W. (1978), The Mechanics of Penetration of Projectiles into Targets, Int. J. Engng. Sci., 16, 1.CrossRefGoogle Scholar
  9. Baker, W.E. (1960), The Elastic-Plastic Response of Thin Spherical Shells to Internal Blast Loading, J. Appl. Mech., 27, 139.MathSciNetCrossRefMATHGoogle Scholar
  10. Balendra, R. and Travis, F.W. (1970), Static and Dynamic Blanking of Varying Hardness, Int. J. Mach. Tool. Des. Res., 10, 249.CrossRefGoogle Scholar
  11. Banerjee, A.K. and Malvern, L.E. (1975), Computation of Incremental Torsional Plastic Waves with Rate-Dependent Models, Int. J. Solids Struct., 11, 347.CrossRefGoogle Scholar
  12. Bell, J.F. (1960), The Propagation of Large Amplitude Waves in Annealed Aluminum, J. Appl. Phys., 31, 277.CrossRefGoogle Scholar
  13. Bell, J.F. (1968), The Physics of Large Deformation of Crystalline Solids, Springer Tracts in Natural Philosophy, Vol. 14, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  14. Bell, J.F. (1973), The Experimental Foundations of Solid Mechanics, Handbuch der Physik, Vol. VI, Springer-Verlag, Berlin.Google Scholar
  15. Bell, J.F. and Stein, A. (1962), The Incremental Loading Wave in the Pre-stressed Plastic Field, J. Mecan., 1, 395.Google Scholar
  16. Bianchi, G. (1964), Some Experimental and Theoretical Studies on the Propagation of Longitudinal Plastic Waves in a Strain-Rate Dependent Material, in IUTAM Symp. Stress Waves in Anelastic Solids (eds., H. Kolsky and W. Prager), Springer-Verlag, Berlin, p. 101.CrossRefGoogle Scholar
  17. Bishop, J.F.W., Hill, R., and Mott, N.F. (1945), The Theory of Indentation and Hardness Tests, Proc. Roy. Phys. Soc, 57, 147.CrossRefGoogle Scholar
  18. Bleich, H.H. and Salvadori, N.G. (1953), Impulsive Motion of Elastic-Plastic Beams, Proc. ASCE, 79, 287.Google Scholar
  19. Bodner, S.R. and Symonds, P.S. (1962), Experimental and Theoretical Investigation of the Plastic Deformation of Cantilever Beams Subjected to Impulsive Loading, J. Appl. Mech.,29, 719.CrossRefGoogle Scholar
  20. Boyd, D.E. (1966), Dynamic Deformation of Circular Membranes, J. Engng. Mech. Div., Trans. ASCE, 92, 1.Google Scholar
  21. Calder, C.A. and Goldsmith, W. (1971), Plastic Deformaion and Perforation of Thin Plates Resulting from Projectile Impact, Int. J. Solids Struct., 7, 863.CrossRefGoogle Scholar
  22. Campbell, J.D. (1954), The Yield of Mild Steel Under Impact Loading, J. Mech. Phys. Solids, 3, 54.CrossRefGoogle Scholar
  23. Campbell, J.D. (1972), Dynamic Plasticity of Metals, Springer-Verlag, New York.MATHGoogle Scholar
  24. Campbell, J.D. (1973), Dynamic Plasticity: Macroscopic and Microscopic Aspects, Mater. Sci. Engng., 12, 3.CrossRefGoogle Scholar
  25. Chadwick, P. (1959), The Quasi-Static Expansion of a Spherical Cavity in Metals and Ideal Soils, Quart. J. Mech. Appl. Math., 12, 52.MathSciNetCrossRefMATHGoogle Scholar
  26. Chadwick, P., Cox, A.D., and Hopkins, H.G. (1964), Mechanics of Deep Underground Explosions, Phil. Trans. Roy. Soc, 256, 235.MathSciNetCrossRefGoogle Scholar
  27. Chakrabarty, J. (1998), Theory of Plasticity, 2nd Edition, McGraw-Hill, Singapore.Google Scholar
  28. Chon, C.T. and Symonds, PS. (1977), Large Dynamic Plastic Deflection of Plates by Mode Method, J. Engng. Mech. Div., Trans. ASCE, 103, 169.Google Scholar
  29. Chou, P.C. (1961), Perforation of Plates by High Speed Projectiles, in Developments in Mechanics (eds., J.E. Lay and L.E. Malvern), North-Holland, Amsterdam, p. 286.Google Scholar
  30. Clifton, R.J. (1966), An Analysis of Combined Longitudinal and Torsional Plastic Waves in a Thin-Walled Tube, Proc. 5th U.S. Nat. Congr. Appl. Mech., p. 456.Google Scholar
  31. Clifton, R.J. (1973), Plastic Waves: Theory and Experiment, in Mechanics Today (ed., Nemal-Nasser), Pergamon Press, New York, p. 102.Google Scholar
  32. Clifton, R.J. and Bodner, S.R. (1966), An Analysis of Longitudinal Elastic-Plastic Pulse Propagation, J. Appl. Mech., 33, 248.CrossRefGoogle Scholar
  33. Cline, C.B. and Jahsman, W.E. (1967), Response of a Rigid-Plastic Ring to Impulsive Loading, J. Appl. Mech., 34, 329.CrossRefGoogle Scholar
  34. Conroy, M.F. (1952), Plastic-Rigid Analysis of Long Beams Under Transverse Impact Loading, J. Appl. Mech., 19, 465.Google Scholar
  35. Conroy, M.F. (1956), Plastic Deformation of Semi-Infinite Beams Subject to Transverse Impact Loading, J. Appl. Mech., 23, 239.MATHGoogle Scholar
  36. Conroy, M.F. (1969), Rigid-Plastic Analysis of a Simply Supported Circular Plate due to Dynamic Circular Loading, J. Franklin Inst., 288, 121.CrossRefGoogle Scholar
  37. Cotter, B.A. and Symonds, P.S. (1955), Plastic Deformation of a Beam Under Impulsive Loading, Proc. ASCE, 81, 675.Google Scholar
  38. Cox, A.D. and Morland, L.W. (1959), Dynamic Plastic Deformations of Simply Supported Square Plates, J. Mech. Phys. Solids, 7, 229.MathSciNetCrossRefMATHGoogle Scholar
  39. Craggs, J.W (1954), Wave Motion in Plastic-Elastic Strings, J. Mech. Phys. Solids, 2, 286.MathSciNetCrossRefGoogle Scholar
  40. Craggs, J.W. (1957), The Propagation of Infinitesimal Plane Waves in Elastic-Plastic Materials, J. Mech. Phys. Solids,5, 115.MathSciNetCrossRefGoogle Scholar
  41. Craggs, J.W (1961), Plastic Waves, in Progress in Solid Mechanics (eds., I.N. Sneddon and R. Hill), Vol. 2, Chap. 4, North-Holland, Amsterdam.Google Scholar
  42. Cristescu, N. (1960), Some Observations on the Propagation of Plastic Waves in Plates, in Plasticity (eds., E.H. Lee and P.S. Symonds), Pergamon Press, New York, p. 501.Google Scholar
  43. Cristescu, N. (1963), On the Propagation of Elastic-Plastic Waves in Metallic Rods, Bull. Acad. Polon. Sci., 11, 129.Google Scholar
  44. Cristescu, N. (1964), Some Problems on the Mechanics of Extensible Strings, in Stress Waves in Anelastic Solids (eds., H. Kolsky and W. Prager), Springer-Verlag, Berlin, p. 118.CrossRefGoogle Scholar
  45. Cristescu, N. (1965), Loading/Unloading Criteria for Rate Sensitive Materials, Arch. Mech. Stos., 17, 291.Google Scholar
  46. Cristescu, N. (1967), Dynamic Plasticity, North-Holland, Amsterdam.MATHGoogle Scholar
  47. Cristescu, N. (1970), The Unloading in Symmetric Longitudinal Impact of Two Elastic-Plastic Bars, Int. J. Mech. Sci., 12, 723.CrossRefGoogle Scholar
  48. Cristescu, N. (1972), A Procedure for Determining the Constitutive Equations for Materials Exhibiting Both Time-Dependent and Time-Independent Plasticity, Int. J. Solids Struct., 8, 511.CrossRefGoogle Scholar
  49. Cristescu, N. (1974), Rate-Type Constitutive Equations in Dynamic Plasticity, in Problems of Plasticity (ed., A. Sawczuk), Noordhoff International, Groningen, p. 287.CrossRefGoogle Scholar
  50. Cristescu, N. and Bell, J.F. (1970), On Unloading in the Symmetrical Impact of Two Aluminium Bars, in Inelastic Behaviour of Solids (eds., M.F. Kannienen et al.), McGraw-Hill, New York, p. 397.Google Scholar
  51. Cristescu, N. and Suliciu, I. (1982), Viscoplasticity, Martinus Nijhoff, The Hague.MATHGoogle Scholar
  52. Davies, R.M. and Hunter, S.C. (1963), The Dynamic Compression Testing of Solids by the Method of the Split Hopkinson Pressure Bar, J. Mech. Phys. Solids, 11, 155.CrossRefGoogle Scholar
  53. Dean, T.H. (1970), Influence of Billet Inertia and Die Friction in Forging Processes, Proc. 11th Int. M.T.D.R. Conf, Pergamon Press, Oxford.Google Scholar
  54. De Juhasz, K.J. (1949), Graphical Analysis of Impact of Bars Stressed above the Elastic Range, J. Franklin Inst., 248, 15 and 113.Google Scholar
  55. Dillons, O.W. (1968), Experimental Data on Small Plastic Deformation Waves in Annealed Aluminium, Int. J. Solids Struct., 4, 197.CrossRefGoogle Scholar
  56. Donnel, L.H. (1930), Longitudinal Wave Transmission and Impact, Trans. ASME, 52, 153.Google Scholar
  57. Dowling, A.R., Harding, J., and Campbell, J.D. (1970), The Dynamic Punching of Metals, J. Inst. Metals, 98 , 215.Google Scholar
  58. Duwez, P.E. and Clark, D.S. (1947), An Experimental Study of the Propagation of Plastic Deformation Under Conditions of Longitudinal Impact, Proc. ASTM, 47, 502.Google Scholar
  59. Duwez, P.E., Clark, D.S., and Bohenblust, H.F. (1950), The Behaviour of Long Beams Under Impact Loading, J. Appl. Mech., 7, 27.Google Scholar
  60. Eason, G. and Shield, R.T. (1956), Dynamic Loading of Rigid-Plastic Cylindrical Shells, J. Appl. Mech., 4, 53.MathSciNetCrossRefMATHGoogle Scholar
  61. Efron, L. and Malvern, L.E. (1969), Electromagnetic Velocity Transducer Studies of Plastic Waves in Aluminum Bars, Experimental Mech., 9, 255.CrossRefGoogle Scholar
  62. Ezra, A.A. (1958), The Plastic Response of a Simply Supported Beam Under Impact Loading, Proc. 3rd U.S. Nat. Congr. Appl. Mech., p. 513.Google Scholar
  63. Florence, A.L. (1965), Annular Plate Under a Transverse Line Impulse, AIAA J., 3, 1726.CrossRefGoogle Scholar
  64. Florence, A.L. (1966), Clamped Circular Rigid-Plastic Plates Under Blast Loading, J. Appl. Mech., 33, 256.CrossRefGoogle Scholar
  65. Florence, A.L. (1977), Response of Circular Plates to Central Pulse Loading, Int. J. Solids Struct., 13, 1091.CrossRefMATHGoogle Scholar
  66. Forrestal, M.J., Barr, N.S., and Luk, V.K. (1991), Penetrating of Strain-Hardening Targets with Rigid Spherical Nose Rods, J. Appl. Mech., 58, 7.CrossRefGoogle Scholar
  67. Forrestal, M.J. and Luk, V.K. (1988), Dynamic Spherical Cavity Expansion in a Compressible Elastic-Plastic Solid, J. Appl. Mech., 55, 275.CrossRefGoogle Scholar
  68. Forrestal, M.J., Okajima, K., and Luk, V.K. (1988), Penetration of 6061-T651 Aluminum Targets with Rigid Long Rods, J. Appl. Mech., 55, 755.CrossRefGoogle Scholar
  69. Freiberger, W. (1952), A Problem of Dynamic Plasticity. The Enlargement of a Circular Hole in a Flat Sheet, Proc. Cambridge Philos. Soc, 48, 135.MathSciNetCrossRefMATHGoogle Scholar
  70. Galiev, S.U. and Nechitailo, N.V (1985), The Dynamics of Shape Changes, in Thin Plates and Shells of Revolution, Acad. Sci. Ukrainian SSR, Kiev.Google Scholar
  71. Gilman, J.J. (1960), Physical Nature of Plastic Row and Fracture, in Plasticity (eds., E.H. Lee and P.S. Symonds) Pergamon Press, Oxford, UK, p. 44.Google Scholar
  72. Goel, R.P. and Malvern, L.E. (1970), Biaxial Plastic Simple Waves with Combined Isotropic and Kinematic Work-Hardening, J. Appl. Mech., 37, 1100.CrossRefGoogle Scholar
  73. Goldsmith, W (1960), Impact, Edward Arnold, London.MATHGoogle Scholar
  74. Goldsmith, W and Finnegan, S.A. (1971), Penetration and Perforation Processes in Metal Targets at and above Ballistic Velocities, Int. J. Mech. Sei., 13, 843.CrossRefGoogle Scholar
  75. Goodier, J.N. (1968), Dynamic Buckling of Rectangular Plates in Sustained Plastic Compressive Row, in Engineering Plasticity (eds., J. Heyman J. and F.A. Leckie), Cambridge University Press, Cambridge, UK, p. 183.Google Scholar
  76. Gu, W., Tang, W., and Liu, T. (1996), Dynamic Pulse Buckling of Cylindrical Shells Subjected to External Impulsive Loading, J. Pressure Vessel Technol, 118, 33.CrossRefGoogle Scholar
  77. Haddow, J.B. (1965), On the Compression of a Thin Disc, Int. J. Mech. Sci., 7, 657.CrossRefGoogle Scholar
  78. Hashmi, M.S.J. (1980), Strain Rate Sensitivity of Mild Steel at Room Temperature and Strain Rate of up to 105 s_1, Analysis, 15, 201.Google Scholar
  79. Hawkyard, J.B. (1969), A Theory for the Mushrooming of Rat-Ended Projectiles Impinging on a Flat Rigid Anvil Using Energy Considerations, Int. J. Mech. Sci., 11, 313.CrossRefGoogle Scholar
  80. Hill, R. (1962), Acceleration Waves in Solids, J. Mech. Phys. Solids, 10, 1.MathSciNetCrossRefMATHGoogle Scholar
  81. Hill, R. (1980), Cavitation and the Influence of Headshape in Attack of Thick Targets by Nondeforming Projectiles, J. Mech. Phys. Solids, 28, 249.CrossRefMATHGoogle Scholar
  82. Hodge, R. G. (1955), Impact Pressure Loading of Rigid-Plastic Cylindrical Shells, J. Mech. Phys. Solids, 3, 176.MathSciNetCrossRefGoogle Scholar
  83. Hodge, PG. (1956), The Influence of Blast Characteristics on the Final Deformation of Circular Cylindrical Shells, J. Appl. Mech., 23, 617.MATHGoogle Scholar
  84. Hodge, PG. (1959), The Effect of End Conditions on the Dynamic Loading of Plastic Shells, J. Mech. Phys. Solids, 7, 258.MathSciNetCrossRefMATHGoogle Scholar
  85. Hopkins, H.G. (1960), Dynamic Expansion of Spherical Cavities, in Metals, Progress in Solid Mechanics (eds., I.N. Sneddon and R. Hill), Vol.1, Chap. 3, North Holland Publishing Company, Amsterdam.Google Scholar
  86. Hopkins, H.G. (1968), The Method of Characteristics and its Application to the Theory of Stress Waves in Solids, in Engineering Plasticity (eds., J. Heyman and F.A. Leckie), Cambridge University Press, Cambridge, UK, p. 277.Google Scholar
  87. Hopkins, H.G. and Prager, W. (1954), On the Dynamics of Plastic Circular Plates, Z Angew. Math. Mech., 5, 317.MathSciNetCrossRefMATHGoogle Scholar
  88. Hudson, G.E. (1951), A Theory of Dynamic Plastic Deformation of a Thin Diaphragm, J. Appl. Phys., 22, 1.MathSciNetCrossRefMATHGoogle Scholar
  89. Humphreys, J.S. (1965), Plastic Deformation of Impulsively Loaded Straight Clamped Beams, J. Appl. Mech., 32, 7.CrossRefGoogle Scholar
  90. Hunter, S.C. (1957), The Propagation of Spherically Symmetric Disturbances in Ideally Plastic Materials, Proc. Conf. Prop. Mat. at High Rates of Strain, Instn. Mech. Engrs. (London), p. 147.Google Scholar
  91. Hunter, S.C. and Crozier, R.J.M. (1968), Similarity Solution for the Rapid Uniform Expansion of a Spherical Cavity in a Compressible Elastic-Plastic Solid, Quart. J. Mech. Appl. Math., 21, 467.CrossRefMATHGoogle Scholar
  92. Jahsman, W.E. (1974), Reflection and Refraction of Weak Elastic-Plastic Waves, J. Appl. Mech., 41, 117.CrossRefMATHGoogle Scholar
  93. Jansen, D.M. ,Datta, S.K., and Jahsman, W.E. (1972), Propagation of Weak Waves in Elastic-Plastic Solids, J. Mech. Phys. Solids, 20, 1.MathSciNetCrossRefGoogle Scholar
  94. Johnson, W (1972), Impact Strength of Materials, Edward Arnold, London.MATHGoogle Scholar
  95. Johnson, W, Kormi, K., and Travis, F.W. (1965), The Explosive Drawing of Square and Rat-Bottomed Circular Cups and Double Pulsation Phenomenon, Proc. 5th Int. M.T.D.R. Conf Pergamon Press, Oxford, p. 293.Google Scholar
  96. Johnson, W and Travis, F.W. (1966), High Speed Blanking of Copper, Proc. Inst. Mech. Engrs. 180, Paper No. 16.Google Scholar
  97. Johnson, W., Sengupta, A.K., and Ghosh, S.K. (1982), Plasticine Modelled High Velocity Impact and Ricochet of Long Rods, Int. J. Mech. Sci., 24, 437.CrossRefGoogle Scholar
  98. Jones, N. (1967), Influence of Strain-Hardening and Rate-Sensitivity on the Permanent Deformation of Impulsively Loaded Rigid Plastic Beams, Int. J. Mech. Sci., 9 , 111.CrossRefGoogle Scholar
  99. Jones, N. (1968a), Impulsive Loading of a Simply Supported Circular Rigid-Plastic Plate, J. Appl. Mech., 35, 59.CrossRefGoogle Scholar
  100. Jones, N. (1968b), Finite Deflections of a Simply Supported Rigid Plastic Annular Plate Loaded Dynamically, Int. J. Solids Struct., 4, 593.CrossRefGoogle Scholar
  101. Jones, N. (1970), The Influence of Large Deflections on the Behaviour of Rigid/Plastic Cylindrical Shells Loaded Impulsively, J. Appl. Mech., 37, 416.CrossRefGoogle Scholar
  102. Jones, N. (1971), A Theoretical Study of the Dynamic Plastic Behaviour of Beams and Plates with Finite Deflections, Int. J. Solids Struct., 7, 1007.CrossRefMATHGoogle Scholar
  103. Jones, N. (1989), Structural Impact, Cambridge University Press, Cambridge, UK.Google Scholar
  104. Jones, N. and Ahn, CS. (1974), Dynamic Elastic and Plastic Buckling of Complete Spherical Shells, Int. J. Solids Struct., 10, 1357.CrossRefMATHGoogle Scholar
  105. Jones, N. and Okawa, D.M. (1976), Dynamic Plastic Buckling of Rings and Cylindrical Shells, Nuclear Engng. Design, 37, 125.CrossRefGoogle Scholar
  106. Jones, N, Uran, T., and Tekin, S.A. (1970), The Dynamic Plastic Behaviour of Fully Clamped Rectangular Plates, Int. J. Solids Struct., 6, 1499.CrossRefGoogle Scholar
  107. Kalisky, S. (1970), Approximate Solutions for Dynamically Loaded Inelastic Structures and Continua, Int. J. Nonlinear Mech., 5, 143.CrossRefGoogle Scholar
  108. Kalisky, S. (1989), Plasticity Theory and Engineering Applications, Elsevier, Amsterdam.Google Scholar
  109. Karunes, B. and Onat, E.T. (1960), On the Effect of Shear on Plastic Deformation of Beams Under Transverse Impact Loading, J. Appl. Mech., 27, 10.Google Scholar
  110. Keil, A.H. (1960), Problems of Plasticity in Naval Structures, Explosive and Impact Loading, in Plasticity (eds., E.H. Lee and P.S. Symonds), Pergamon Press, Oxford, UK, p. 22.Google Scholar
  111. Kelly, J.M. and Wilshaw, T.R. (1968), A Theoretical and Experimental Study of Projectile Impact on Clamped Circular Plates, Proc. Roy. Soc. London Ser. A, 306, 435.CrossRefGoogle Scholar
  112. Klepaczko, J. (1968), Strain Rate History Effects for Polycrystalline Aluminium and Theory of Intersection, J. Mech. Phys. Solids, 16, 255.CrossRefGoogle Scholar
  113. Kolsky, H. (1949), An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading, Proc. Phys. Soc, B62, 676.Google Scholar
  114. Kolsky, H. (1953), Stress Waves in Solids, Clarendon Press, Oxford, UK.MATHGoogle Scholar
  115. Kolsky, H. and Douch, L.S. (1962), Experimental Studies in Plastic Wave Propagation, J. Mech. Phys. Solids, 10, 195.CrossRefGoogle Scholar
  116. Krajcinovic, D. (1972), Dynamic Analysis of Clamped Plastic Circular Plates, Int. J. Mech. Sci., 14, 225.CrossRefMATHGoogle Scholar
  117. Kukudjanov, V.N. (1967), Propagation of Elastic-Plastic Waves in Rods Taking into Account the Rate Influence (in Russian), Computing Centr. Acad. Sci., USSR, Moscow.Google Scholar
  118. Kumar, A. and Reddy, V.V.K. (1986), Dynamic Plastic Response of Circular Plates with Transverse Shear, J. Appl. Mech., 53, 952.CrossRefGoogle Scholar
  119. Kuzin, P.A. and Shapiro, G.S. (1966), On Dynamic Behaviour of Plastic Structures, Proc. 11th Int. Congr. Appl. Mech. (Munich, 1964), Springer-Verlag, New York, p. 629.Google Scholar
  120. Lebedev, N.F. (1954), Prikl. Mat. Mekh., 18, 167.MATHGoogle Scholar
  121. Lee, E.H. (1953), A Boundary Value Problem in the Theory of Plastic Wave Propagation, Quart. Appl Math., 10, 335.MathSciNetMATHGoogle Scholar
  122. Lee, E.H. (1960), The Theory of Wave Propagation in Anelastic Materials, in Stress Wave Propagation in Materials (ed. N. Davids), Interscience, New York, p. 199.Google Scholar
  123. Lee, E.H. and Symonds, P.S. (1952), Large Plastic Deformation of Beams Under Transverse Impact Loading. J. Appl. Mech., 19, 308.Google Scholar
  124. Lee, E.H. and Tupper, S.J. (1954), Analysis of Plastic Deformation in a Steel Cylinder Striking a Rigid Target, J. Appl. Mech., 21, 63.Google Scholar
  125. Lee, L.H.N. (1977), Quasi-Bifurcation in Dynamics of Elastic-Plastic Continua, J. Appl. Mech., 44, 413.CrossRefMATHGoogle Scholar
  126. Lee, L.H.N. (1981), Dynamic Buckling of an Inelastic Column, Int. J. Solids Struct., 17, 271.CrossRefMATHGoogle Scholar
  127. Lee, L.S.S. and Martin, J.B. (1970), Approximate Solutions of Impulsively Loaded Structures of a Rate Sensitive Material, Z Angew. Math. Phys, 21, 1011.CrossRefMATHGoogle Scholar
  128. Lensky, VS. (1949), Prikl Mat. Mekh., 13, 165.Google Scholar
  129. Lin, H.C. and Wu, H.C. (1976), Strain Rate Effect in Endochronic Theory of Viscoplasticity, J. Appl. Mech., 43, 92.Google Scholar
  130. Lin, H.C. and Wu, H.C. (1983), On the Rate Dependent Endochronic Theory of Viscoplasticity and its Application to Plastic Wave Propagation, Int. J. Solids Struct., 19, 587.CrossRefMATHGoogle Scholar
  131. Lindholm, U.S. (1964), Some Experiments with the Split Hopkinson Pressure Bar, J. Mech. Phys. Solids, 12, 317.CrossRefGoogle Scholar
  132. Lippmann, H. (1966), On the Dynamics of Forging, Proc. 7th Int. Conf. MTDR, Pergamon Press, Oxford, UK.Google Scholar
  133. Liu, D. and Stronge, W.J. (1996), Deformation of Simply Supported Circular Plate by Central Pressure Pulse, Int. J. Solids Struct., 33, 283.CrossRefMATHGoogle Scholar
  134. Lubiner, J. (1965), The Strain Rate Effect in Plastic Wave Propagation, J. Mecan., 4, 111.Google Scholar
  135. Ludwik, P. (1909), Elemente der Technologischen Mechanik, Springer-Verlag, Berlin.MATHGoogle Scholar
  136. Luk, V.K. and Arnos, D.E. (1991), Dynamic Cylindrical Cavity Expansion of Compressible Strain-Hardening Material, J. Appl. Mech., 58, 334.CrossRefGoogle Scholar
  137. Luk, V.K., Forrestal, M.J., and Amos, D.E. (1991), Dynamic Spherical Cavity Expansion of Strain-Hardening Material, J. Appl. Mech., 58, 1.CrossRefGoogle Scholar
  138. Malvern, L.E. (1951), The Propagation of Longitudinal Waves of Plastic Deformation in a Bar of Material Exhibiting Strain-Rate Effect, J. Appl. Mech., 18, 203.MathSciNetGoogle Scholar
  139. Malvern, L.E. (1965), Experimental Studies of Strain Rate Effects and Plastic Wave Propagation in Annealed Aluminum, in Behavior of Materials Under Dynamic Loading, ASME,p. 81.Google Scholar
  140. Malyshev, V.M. (1961), J. Prikl Mekh. Tech. Fiz.,2, 104.Google Scholar
  141. Mandel, J. (1962), Ondes Plastiques dans Milieu Indéfini a Trois Dimensions, in Extrait du Seminaire de Plasticite, Publ. Sci. Techn. Min. Air. NT 116, Paris, p. 151.Google Scholar
  142. Mandel, J. (1972), Plasticite Classique et Viscoplasticite, Springer-Verlag, Wien.MATHGoogle Scholar
  143. Manjoine, M.J. (1944), The Influence of Rate of Strain and Temperature on Yield Stresses of Mild Steel, J. Appl. Mech., 11, 211.Google Scholar
  144. Martin, J.B. and Lee, L.S.S. (1968), Approximate Solutions for Impulsively Loaded Elastic-Plastic Beams, J. Appl. Mech., 35, 803.CrossRefMATHGoogle Scholar
  145. Martin, J.B. and Symonds, P.S. (1966), Mode Approximations for Impulsively Loaded Rigid-Plastic Structures, J. Engng. Mech. Div., Proc. ASCE, 92, 43.Google Scholar
  146. Mentel, T.J. (1958), The Plastic Deformation due to Impact of a Cantilever Beam with an Attached Tip Mass, J. Appl. Mech., 25, 515.MATHGoogle Scholar
  147. Morland, L.W. (1959), The Propagation of Plane Irrotational Waves Through an Elasto-plastic Medium, Philos. Trans. Roy. Soc. London Ser A, 251, 341.MathSciNetCrossRefMATHGoogle Scholar
  148. Munday, G. and Newitt, D.M. (1963), The Deformation of Transversely Loaded Discs Under Dynamic Loads, Philos. Trans. Roy. Soc. London Ser. A, 256, 1.CrossRefMATHGoogle Scholar
  149. Nicholas, T. (1971), Strain Rate History Effects in Several Metals in Torsion, Experimental Mech., 11, 153.CrossRefGoogle Scholar
  150. Nicholas, T. (1982), Elastic-Plastic Stress Waves, in Impact Dynamics (eds., A. Zukas et al.), Wiley, New York, pp. 95–153.Google Scholar
  151. Nonaka, T. (1977), Shear and Bending Response of a Rigid Plastic Beam in Blast Type Loading, Ingenieur-Archiv, 46, 35.CrossRefGoogle Scholar
  152. Nurick, G.N., Pearce, H.T., and Martin, J.B. (1987), Prediction of Transverse Deflection and In-Plane Strain in Impulsively Loaded Thin Plates, Int. J. Mech. Sci., 29, 435.CrossRefMATHGoogle Scholar
  153. Owens, R.H. and Symonds, P.S. (1955), Plastic Deformation of a Free Ring Under Concentrated Dynamic Loading, J. Appl. Mech., 22, 523.MATHGoogle Scholar
  154. Parkes, E.W. (1955), The Permanent Deformation of a Cantilever Struck Transversely at its Tip, Proc. Roy. Soc. London, Ser. A, 228, 462.CrossRefGoogle Scholar
  155. Parkes, E.W. (1958), The Permanent Deformation of an Encastre Beam Struck Transversely at any Point in its Span, Proc. Inst. Civil Engrs., 10, 277.CrossRefGoogle Scholar
  156. Perrone, N. (1965), On a Simplified Method of Solving Impulsively Loaded Structures of Rate-Sensitive Materials, J. Appl Mech., 32, 489.MathSciNetCrossRefGoogle Scholar
  157. Perrone, N. (1967), Impulsively Loaded Strain Rate Sensitive Plates, J. Appl. Mech., 34, 380.CrossRefGoogle Scholar
  158. Perrone, N. (1970), Impulsively Loaded Strain-Hardened Rate Sensitive Rings and Tubes, Int. J. Solids Struct., 6, 119.CrossRefGoogle Scholar
  159. Perrone, N. and Bhadra, P. (1984), Simplified Large Deflection Mode Solutions for Impulsively Loaded Viscoplastic Circular Membranes, J. Appl. Mech., 51, 505.CrossRefGoogle Scholar
  160. Perzyna, P. (1958), Dynamic Load Carrying Capacity of a Circular Plate, Arch. Mech. Stos., 10, 635.MathSciNetMATHGoogle Scholar
  161. Perzyna, P. (1963), The Constitutive Equations for Rate Sensitive Plastic Solids, Quart. Appl. Math., 20, 321.MathSciNetMATHGoogle Scholar
  162. Perzyna, P. (1966), Fundamental Problems in Viscoplasticity, Adv. in Appl. Mech., 9, 243.Google Scholar
  163. Rakhmatulin, H.A. (1945), On the Propagation of Waves of Unloading (in Russian), Prikl. Mat. Mekh., 9, 91.MathSciNetMATHGoogle Scholar
  164. Rakhmatulin, H.A. and Shapiro, G.S. (1948), Prikl Mat. Mekh., 12, 369.MATHGoogle Scholar
  165. Raphanel, J.L. and Symonds, P.S. (1984), The Estimation of Large Deflections of a Portal Frame Under Asymmetric Pulse Loading, J. Appl Mech., 51, 494.CrossRefGoogle Scholar
  166. Rawlings, B. (1964), Mode Changes in Frames Deforming Under Impulsive Loads, J. Mech. Engng. Sci., 6, 327.CrossRefGoogle Scholar
  167. Recht, R.F. and Ipson, T.W. (1963), Ballistic Performance Dynamics, J. Appl. Mech., 30, 384.CrossRefGoogle Scholar
  168. Reid, S.R. and Gui, X.G. (1987), On the Elastic-Plastic Deformation of Cantilever Beams Subjected to Tip Impact, Int. J. Impact Engng., 6, 109.CrossRefGoogle Scholar
  169. Reid, S.R., Wang, B., and Yu, T.X. (1995),Yield Mechanism for a Bent Cantilever Beam Subjected to a Suddenly Applied Constant Out-of-Plane Tip Force, Int. J. Impact Engng., 16, 89.Google Scholar
  170. Rinehart, J.S. and Pearson, J. (1965), Behavior of Metals Under Impulsive Loads, Dover, New York.Google Scholar
  171. Ripperger, E.A. (1960), Experimental Studies of Plastic Wave Propagation in Bar, in Plasticity (eds., E.H. Lee and P.S. Symonds), Pergamon Press, New York, p. 475.Google Scholar
  172. Rosenberg, Z. and Dekel, E. (1994), The Relation Between the Penetration Capability of Long Rods and Their Length to Diameter Ratios, Int. J. Impact Engng., 15, 125.CrossRefGoogle Scholar
  173. Sankaranaryanan, R. (1963), On the Dynamics of Plastic Spherical Shells, J. Appl. Mech., 30, 87.CrossRefGoogle Scholar
  174. Sankaranarayanan, R. (1966), On the Impact Pressure Loading of a Plastic Spherical Cap., J. Appl Mech., 33, 704.CrossRefGoogle Scholar
  175. Seiler, J.A., Cotter, B.A., and Symonds, P.S. (1956), Implsive Loading of Elastic-Plastic Beams, J. Appi. Mech., 23, 516.Google Scholar
  176. Seiler, J. A. and Symonds, P.S. (1954), Plastic Deformation of Beams Under Distributed Dynamic Loads, J. Appl. Phys., 25, 556.CrossRefMATHGoogle Scholar
  177. Shapiro, G.S. (1959), On a Rigid-Plastic Annular Plate Under Impulsive Load (translation from Russian), J. Appl. Math. Mech., 23, 234.MathSciNetCrossRefMATHGoogle Scholar
  178. Sokolovsky, W.W. (1948), The Propagation of Elastic Viscoplastic Waves in Bars (in Russian), Prikl. Math. Mekh., 12, 261.Google Scholar
  179. Steinberg, D. and Lund, O. (1989), A Constitutive Model for Strain Rates from 10–4 to 106 s-1, J. Appl. Phys., 65, 1528.CrossRefGoogle Scholar
  180. Sternglass, E.J. and Stuart, D.A. (1953), An Experimental Study of Propagation of Transient Longitudinal Deformation in Elastic-Plastic Media, J. Appl. Mech., 20, 427.Google Scholar
  181. Stronge, W.J., Shu, D., and Shim, V.P.W. (1990), Dynamics Modes of Plastic Deformation for Suddenly Loaded Curved Beams, Int. J. Impact Engng., 9, 1.CrossRefGoogle Scholar
  182. Stronge, W.J. and Yu, T.X. (1993), Dynamic Models for Structural Plasticity, Springer-Verlag, London.CrossRefGoogle Scholar
  183. Symonds, P.S. (1953), Dynamic Load Characteristics in Plastic Bending of Beams, J. Appl. Mech., 20, 475.MATHGoogle Scholar
  184. Symonds, P.S. (1954), Large Plastic Deformation of Beams Under Blast Type Loading, Proc. 2nd U.S. Nat. Congr. Appl. Mech., Ann Arbor, p. 506.Google Scholar
  185. Symonds, P.S. (1980), Finite Elastic and Plastic Deformations of Pulse Loaded Structures by an Extended Mode Technique, Int. J. Mech. Sci., 22, 597.CrossRefMATHGoogle Scholar
  186. Symonds, P.S. and Fleming, W.T. (1984), Parkes Revisited: On Rigid-Plastic and Elastic-Plastic Dynamic Structural Analysis, Int. J. Impact Engng., 2, 1.CrossRefGoogle Scholar
  187. Symonds, P.S. and Leth, C.F. (1954), Impact of Finite Beams of Ductile Metal, J. Mech. Phys. Solids, 2, 92.MathSciNetCrossRefGoogle Scholar
  188. Symonds, P.S. and Mentel, T.J. (1958), Inpulsive Loading of Plastic Beams with Axial Restraint, J. Mech. Phys. Solids, 6, 183.MathSciNetCrossRefGoogle Scholar
  189. Symonds, P.S. and Wierzbicki, T. (1979), Membrane Mode Solutions for Impulsively Loaded Circular Plates, J. Appl. Mech., 46, 58.CrossRefMATHGoogle Scholar
  190. Tate, A. (1969), Further Results on Long Rod Penetration, J. Mech. Phys. Solids, 17, 141.MathSciNetCrossRefGoogle Scholar
  191. Taylor, G.I. (1942), The Plastic Wave in a Wire Extended by an Impact Load, British Official Report, RC 329.Google Scholar
  192. Taylor, G.I. (1948), The Use of Flat-Ended Projectiles for Determining Dynamic Yield Stress, I, Proc. Roy. Soc. London Ser. A, 194, 289.CrossRefGoogle Scholar
  193. Thomas, H.K. (1961), Large Plastic Flow and Fracture in Solids, Thames Hudson, London.Google Scholar
  194. Thomson, W.T. (1955), An Approximate Theory of Armour Penetration, J. Appl Phys., 26, 80.CrossRefGoogle Scholar
  195. Ting, T.C.T. (1964), The Plastic Deformation of a Cantilever Beam with Strain Rate Sensitivity Under Inpulsive Loading, J. Appl. Mech., 11, 38.MathSciNetCrossRefGoogle Scholar
  196. Ting, T.C.T. (1972), The Initiation of Combined Stress Waves in a Thin-Walled Tube due to Impact Loading. Int. J. Solids Struct., 8, 269.CrossRefMATHGoogle Scholar
  197. Ting, T.C.T. (1977), Plastic Wave Speeds in Isotropically Work-Hardening Material, J. Appl. Mech., 44, 68.CrossRefMATHGoogle Scholar
  198. Travis, F.W and Johnson, W. (1962), Experiments in the Dynamic Deformation of Clamped Circular Sheets of Various Metals Subject to an Underwater Explosive Charge, Sheet Metal Indust., 39, 456.Google Scholar
  199. Vaughan, H. and Florence, A.L. (1970), Plastic Row Buckling of Cylindrical Shells Due to Impulsive Loading, J. Appl. Mech., 37, 171.CrossRefGoogle Scholar
  200. von Karman, Th. (1942), On the Propagation of Plastic Deformation in Solids, NDRC Report No.A-29.Google Scholar
  201. von Karman, Th. and Duwez, P.E. (1950), The Propagation of Plastic Deformation in Solids, J. Appl. Phys., 21, 987.MathSciNetCrossRefMATHGoogle Scholar
  202. Wang, A.J. (1955), The Permanent Deflection of a Plastic Plate Under Blast Loading, J. Appl. Mech., 22, 375.MATHGoogle Scholar
  203. Wang, A.J. and Hopkins, H.G. (1954), On the Plastic Deformation of Built-in Circular Plates Under Impulsive Loading, J. Mech. Phys. Solids, 3, 22.MathSciNetCrossRefGoogle Scholar
  204. Whiffen, A.C. (1948), The Use of Flat-Ended Projectiles for Determining Dynamic Yield Stress, II, Proc. Roy. Soc. London Sen A, 194, 300.CrossRefGoogle Scholar
  205. White, M.P. and Griffis, Le Van (1947), The Permanent Strain in a Uniform Bar due to Longitudinal Impact, J. Appl. Mech., Trans. ASME, 69, 33.Google Scholar
  206. Wierzbicki, T. and Jones, N. (1989), Structural Failure (eds.), Wiley, New Delhi.Google Scholar
  207. Wu, H.C. and Lin, H.C. (1974), Combined Plastic Wave in a Thin-Walled Tube, Int. J. Solids Struct., 10, 903.CrossRefMATHGoogle Scholar
  208. Wu, H.C. and Yip, M.C. (1980), Strain Rate and Strain History Effects on the Dynamic Behaviour of Metallic Materials, Int. J. Solids Struct., 16, 515.MathSciNetCrossRefMATHGoogle Scholar
  209. Youngdahl, CK. (1971), Influence of Pulse Shape on the Final Plastic Deformation of Circular Plates, Int. J. Solids Struct., 1, 1127.CrossRefGoogle Scholar
  210. Youngdahl, C.K. (1972), Dynamic Plastic Deformation of Cylindrical Shells, J. Appl. Mech., 39, 746.CrossRefGoogle Scholar
  211. Youngdahl, C.K. (1987), Effect of Pulse Shape and Distribution on the Plastic Deformation of a Circular Plate, Int. J. Solids Struct., 23, 1179.CrossRefMATHGoogle Scholar
  212. Yu, T.X. and Chen, EL. (1992), The Large Deflection Dynamic Plastic Response of Rectangular Plates, Int. J. Impact Engng., 12, 603.CrossRefGoogle Scholar
  213. Yu, T.X. and Jones, N. (1989), Numerical Simulation of a Clamped Beam Under Impact Loading, Computers and Structures, 32, 281.CrossRefGoogle Scholar
  214. Yu, T.X., Symonds, P.S., and Johnson, W. (1985), A Quadrental Circular Beam Subjected to Radial Impact in its own Plane at its Tip by a Rigid Mass, Proc. Roy. Soc. London Ser. A, 400, 19.CrossRefMATHGoogle Scholar
  215. Zaid, M. and Paul, B. (1958), Normal Perforation of a Thin Plate by Truncated Projectiles, J. Franklin Inst., 265, 317.CrossRefGoogle Scholar
  216. Zhu, L. (1996), Transient Deformation Modes of Square Plates Subjected to Explosive Loading, Int. J. Solids Struct., 33, 301.CrossRefMATHGoogle Scholar
  217. Zukas, J.A. (1982), Penetration and Perforation of Solids, in Impact Dynamics (eds., J.A. Zukas et al.), Wiley, New York, p. 155.Google Scholar
  218. Zukas, J.A. and Gaskill, B. (1996), Ricochet of Deforming Projectiles from Deforming Plates, Int. J. Impact Engng., 18, 601.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • J. Chakrabarty
    • 1
  1. 1.Department of Mechanical EngineeringNational Taiwan UniversityTaipeiTaiwan, R.O.C.

Personalised recommendations