Genetics of Temperate Bacteriophages

  • Edward A. Birge


For all bacteriophages discussed in the preceding chapters, a successful phage infection always results in the immediate production of progeny virions. However, many bacteriophages are known for which there is an alternative outcome to phage infection. Instead of the customary unrestrained DNA replication and phage assembly, there is a temperate response in which a bacteriophage sets up housekeeping within a bacterial cell and maintains a stable relationship with that cell and all its progeny for many generations. The varied ways in which the temperate response can be accomplished are the subject of this chapter. The physical properties of the temperate bacteriophages discussed in this chapter are summarized in Table 8.1.


Temperate Bacteriophage Lytic Infection Tail Fiber Helper Phage Integration Host Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Botstein, D. (1980). A theory of modular evolution for bacteriophages. Annals of the New York Academy of Sciences 354: 484–491.PubMedCrossRefGoogle Scholar
  2. Hendrix, R.W., Duda, R.L. (1992). Bacteriophage λPaPa: Not the mother of all λ phages. Science 258: 1145–1148.PubMedCrossRefGoogle Scholar
  3. Howe, M.M. (1998). Bacteriophage Mu, pp. 65–80. In: Busby, S.J.W., Thomas, G.M., Brown, N.L. (eds.), NATO ASI Series, Vol. 103 Molecular Microbiology. Berlin: Springer-Verlag.Google Scholar
  4. Lindqvist, B.H., Dehò, G., Calendar, R. (1993). Mechanisms of genome propagation and helper exploitation by satellite phage P4. Microbiological Reviews 57: 683–702.PubMedGoogle Scholar
  5. Symonds, N., Toussaint, A., van de Putte, P., Howe, M.M. (eds.) (1987). Phage Mu. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.Google Scholar
  6. Weisberg, R.A., Gottesman, M.E. (1999) Processive antitermination. Journal of Bacteriology 181: 359–367.PubMedGoogle Scholar


  1. Arens, J.S., Hang, Q., Hwang, Y., Tuma, B., Max, S., Feiss, M. (1999). Mutations that extend the specificity of the endonuclease activity of lambda terminase. Journal of Bacteriology 181: 218–224.PubMedGoogle Scholar
  2. Arkin, A., Ross, J., McAdams, H.H. (1998). Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149: 1633–1648.PubMedGoogle Scholar
  3. Basak, S., Nagaraja, V. (1998). Transcriptional activator C protein-mediated unwinding of DNA as a possible mechanism for non gene activation. Journal of Molecular Biology 284: 893–902.PubMedCrossRefGoogle Scholar
  4. Casjens, S., Sampson, L., Randall, S. (1992). Molecular genetic analysis of bacteriophage P22 gene 3 product, a protein involved in the initiation of headful DNA packaging. Journal of Nolecular Biology 227: 1086–1099.CrossRefGoogle Scholar
  5. Dehò, G., Zangrossi, S., Sabbattini, P., Sironi, G., Ghisotti, D., (1992). Bacteriophage P4 immunity controlled by small RNAs via transcription termination.Molecular Microbiology 6: 3415–3425.PubMedCrossRefGoogle Scholar
  6. Ko, D.C., Marr, M.T., Guo, T.S., Roberts, J.W. (1998). A surface of Escherichia coli σ 70 required for promoter function and antitermination by phage lambda Q protein. Genes & Development 12: 3276–3285.CrossRefGoogle Scholar
  7. Liu, T., Renberg, S.K., Haggard-Ljungquist, E. (1997). Derepression of prophage P2 by satellite phage P4: Cloning of the P4 epsilon gene and identification of its product. Journal of Virology 71: 4502–4508.PubMedGoogle Scholar
  8. Liu, T., Renberg, S.K., Haggard-Ljungquist, E. (1998). The E protein of satellite phage P4 acts as an antirepressor by binding to the C protein of helper phage P2. Molecular Microbiology 30: 1041–1050.PubMedCrossRefGoogle Scholar
  9. Parker, M.H., Prevelige, P.E. (1998). Electrostatic interactions drive scaffolding/coat protein binding and procapsid maturation in bacteriophage P22. Virology 250: 3 37–349.Google Scholar
  10. Reiter, K., Lam, H., Young, E., Julien, B., Calendar, R. (1998). A complex control system for transcriptional activation from the sid promoter of bacteriphage P4. Journal of Bacteriology 180: 5151–5158.PubMedGoogle Scholar
  11. Shean, C.S., Gottesman, M.E. (1992). Translation of the prophage λ cI transcript. Cell 70: 513–522. (A demonstration of the role of a downstream box in regulating translation efficiency.)PubMedCrossRefGoogle Scholar
  12. Smith, D.L., Young, R. (1998). Oligohistidine tag mutagenesis of the lambda holin gene. Journal of Bacteriology 180: 4199–4211.PubMedGoogle Scholar
  13. Szalewska-Palasz, A.,, Wegrzyn, A., Blaszczak, A., Taylor, K., Wegrzyn, G. (1998a). DnaA-stimulated transcriptional activation of ori lambda: Escherichia coli RNA polymerase β subunit as a transcriptional contact site. Proceedings of the National Academy of Sciences of the USA 95: 4241–4246.PubMedCrossRefGoogle Scholar
  14. Szalewska-Palasz, A., Weigel, C., Speck, C., Srutkowska, S., Konopa, G., Lurz, R., Marszalek, J., Taylor, K., Messer, W., Wegrzyn, G. (1998b). Interaction of the Escherichia coli DnaA protein with bacteriophage λ DNA. Molecular and General Genetics 259: 679–688.PubMedCrossRefGoogle Scholar
  15. Yamauchi, M., Baker, T.A. (1998). An ATP-ADP switch in MuB controls progression of the Mu transposition pathway. TheEMBOJournal 17: 5509–5518.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Edward A. Birge
    • 1
  1. 1.Department of MicrobiologyArizona State UniversityTempeUSA

Personalised recommendations