Transcription and Translation: Processes and Basic Regulation

  • Edward A. Birge


This chapter summarizes processes involved in using genetic information and synthesizing RNA and proteins. These are highly energy-intensive syntheses, and their proper regulation is very important to a cell’s competitiveness. The final section of this chapter presents basic transcription regulatory mechanisms and the concepts of the operon and regulon. Advanced regulatory topics are found in Chapter 14.


Leader Sequence mRNA Molecule Polar Mutation cAMP Receptor Protein tRNA Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Adhya, S. (1996). Negative Control of Transcription, pp. 1503–1512. In: Neidhardt, F.C., Ingraham, J.L, Low, K.B., Magasanik, B., Schaechter, M., Umbarger, H.E. (eds.), Escherichia coli and Salmonella typhinurium: Cellular and NMolecular Biology. 2 vols. Washington, DC: American Society for Microbiology.Google Scholar
  2. Babitzke, P. (1997). Regulation of tryptophan biosynthesis: Trp-ing the TRAP or how Bacillus subtilis reinvented the wheel. Molecular Microbiology 26: 1–9.PubMedCrossRefGoogle Scholar
  3. Bell, S.D., Jackson, S.P. (1998). Transcription and translation in Archaea: a mosaic of Eukaryal and Bacterial features. Trends in Microbiology 6: 222–228.Google Scholar
  4. Brewer, B.J. (1990). Replication and the transcriptional organization of the Escherichia coli chromosome, pp. 61–83. In: Drlica, K., Riley, M. (eds.), The Bacterial Chromosome. Washington, DC: American Society for Microbiology.Google Scholar
  5. Burkhardt, N., Jünemann, R., Spahn, C.M.T., Nierhaus, K.H. (1998). Ribosomal tRNA binding sites: Three-site models of translation. Critical Reviews in Biochemistry and lMlolecular Biology 33: 95–149.CrossRefGoogle Scholar
  6. Coulombe, B., Burton, Z.F. (1999). DNA bending and wrapping around RNA polymerase: a “revolutionary” model describing transcriptional mechanisms. Microbiology and Molecular Biology Reviews 63: 457–478.PubMedGoogle Scholar
  7. Dennis, P.P. (1993). The molecular biology of halophilic archaebacteria, pp. 255–287. In: Vreeland, R.H., Hochstein, L.I. (eds.), The Biology of Halophilic Bacteria. Boca Raton, FL: CRC Press.Google Scholar
  8. Farabaugh, P.J. (1996). Programmed translational frameshifting. Microbiological Reviews 60: 103–134.PubMedGoogle Scholar
  9. Eick, D., Wedel, A., Heumann, H. (1994). From initiation to elongation: comparison of transcription by prokaryotic and eukaryotic RNA polymerases. Trends in Genetics 10: 292–296.PubMedCrossRefGoogle Scholar
  10. Von Hippel, P.H. (1998). An integrated model of the transcription complex in elongation, termination, and editing. Science 281: 660–665. (A summary of findings from E. coli.) CrossRefGoogle Scholar
  11. Mooney, R.A., Artsimovitch, I., Landick, R. (1998). Information Processing by RNA Polymerase: Recognition of Regulatory Signals During RNA Chain Elongation. Journal of Bacteriology 180: 3265–3275. (This review compares RNA polymerase to a Turing machine and presents a model for function.)PubMedGoogle Scholar
  12. Müller-Hill, B. (1996). The lac Operon: A Short History of a Genetic Paradigm. Berlin, Walter de Gruyter. (A very readable summary of the history of the lac operon and our present state of knowledge.)Google Scholar
  13. Perez-Martin, J., de Lorenzo, V. (1997) Clues and consequences of DNA bending in transcription. Annual Review of Microbiology 51: 593–628.PubMedCrossRefGoogle Scholar
  14. Yanofsky, C., Konan, K.V.,Sarsero, J.P. (1996). Some novel transcription attenuation mechanisms used by bacteria. Biochimie 78: 1017–1024.PubMedCrossRefGoogle Scholar


  1. Ajdic, D., Ferretti, J.J. (1998). Transcriptional regulation of the Streptococcus mutans gal operon by the galR repressor. Journal of Bacteriology 180: 5727–5732.PubMedGoogle Scholar
  2. Aki, T, Adhya, S. (1997). Repressor induced site-specific binding of HU for transcriptional regulation. The EMBO Journal 16: 3666–3674.PubMedCrossRefGoogle Scholar
  3. Bashyam, M.D., Tyagi, A.K. (1998). Identification and Analysis of “Extended-10” Promoters from Mycobacteria. Journal of ßacteriology 180: 2568–2573.Google Scholar
  4. Bessarab, D.A., Kaberdin, V.R., Wei, C.L., Liou, G.G., Lin, C.S. (1998). RNA components of Escherichia coli degradosome: Evidence for rRNA decay. Proceedings of the National Academy of Sciences USA 95: 3157–3161.CrossRefGoogle Scholar
  5. Chien, Y.-T., Helmann, J.D., Zinder, S.H. (1998). Interactions between the Promoter Regions of Nitrogenase Structural Genes (nifHDK2) and DNABinding Proteins from N(inf2)- and Ammonium-Grown Cells of the Archaeon Methanosarcina barkeri 227. Journal of IBacteriology 180: 2723–2728.Google Scholar
  6. Geanacopoulos, M., Adhya, S. (1997). Functional characterization of roles of GaIR and GalS as regulators of the gal regulon. Journal of Bacteriology 179: 228–234.PubMedGoogle Scholar
  7. Gohl, H.P., Gröndahl, B., Thomm, M. (1995). Promoter recognition in archaea is mediated by transcription factors: Identification of transcription factor αTFB from Methanococcus thermolithotrophicus as archaeal TATA-binding protein. Nucleic Acids Research 23: 3837–3841.PubMedCrossRefGoogle Scholar
  8. Van de Guchte, M., Ehrlich, S.D., Chopin, A. (1998). tRNATrP as a key element on antitermination in the Lactococcus lactis trp operon. Molecular Microbiology 29: 61–74.PubMedCrossRefGoogle Scholar
  9. Hogema, B.M., Arents, J.C., Bader, R., Eijkemans, K., Inada, T., Aiba, H., Postma, P W. (1998). Inducer exclusion by glucose 6-phosphate in Escherichia coli. Molecular Microbiology 28: 755–765.PubMedCrossRefGoogle Scholar
  10. Lewis, D.E.A., Geanacopoulos, M., Adhya, S. (1999). Role of HU and DNA supercoiling in transcription repression: Specialized nucleoprotein repression complex at gal promoters in Escherichia coli. Molecular Microbiology 31: 451–461.CrossRefGoogle Scholar
  11. Oehler, S., Amouyal, M., Kolkhof, P., von Wilcken-Bergmann, B., Müller-Hill, B. (1994). Quality and position of the three lac operators of E. coli define efficiency of repression. The EMBBO Journal 13: 3348–3355.Google Scholar
  12. Reinhold-Hurek, B., Shub, D.A. (1992). Self-splicing introns in tRNA genes of widely divergent bacteria. Nature 357: 173–176.PubMedCrossRefGoogle Scholar
  13. Yarnell, W.S., Roberts, J.W. (1999). Mechanism of intrinsic transcription termination and antitermination. Science 284: 611–615.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Edward A. Birge
    • 1
  1. 1.Department of MicrobiologyArizona State UniversityTempeUSA

Personalised recommendations