Advertisement

Advanced Regulatory Topics

  • Edward A. Birge

Abstract

Although much of the discussion to this point has dealt with regulation, the regulation has been of a relatively simple type. There has been a single operon, one or two promoters, and a single repressor or activator complex. In many instances cells need to be able to coordinate and/or to sequence the activities of a wide variety of diverse functions in order to achieve an appropriate response to an environmental stimulus. This chapter deals primarily with some methods used by Bacteria to accomplish these goals, although some Archaea are included.

Keywords

Heat Shock Protein Mother Cell Sigma Factor Heat Shock Gene Anabaena Variabilis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Generalized

  1. Boos, W., Shuman, H. (1998). Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiology and Molecular Biology Reviews 62: 204–229.PubMedGoogle Scholar
  2. Craig, E.A., Gambill, B.D., Nelson, R.J. (1993). Heat shock proteins: molecular chaperones of protein biogenesis. Microbiological Reviews 57: 402–414. (Compares proteins from Saccharomyces with proteins from E. coli.) PubMedGoogle Scholar
  3. Dixon, R. (1998). The oxygen-responsive NIFL-NIFA complex: A novel twocomponent regulatory system controlling nitrogenase synthesis in γ-Proteobacteria. Archives of Microbiology169: 371–380.CrossRefGoogle Scholar
  4. Geiduschek, E.P. (1997). Paths to activation of transcription. Science 275: 1614–1616.CrossRefPubMedGoogle Scholar
  5. Haldenwang, W.G., The sigma fctors of Bacillus subtilis. Microbiological Reviews 59: 1–30.Google Scholar
  6. Narberhaus, F. (1999). Negative regulation of bacterial heat shock genes. Molecular Microbiology 31: 1–8.CrossRefPubMedGoogle Scholar
  7. Rudnick, P., Meletzus, D., Green, A., He, L., Kennedy, C. (1997). Regulation of nitrogen fixation by ammonium in diazotrophic species of proteobacteria. Soil Biology and Biochemistry 29: 861–841.CrossRefGoogle Scholar
  8. Wösten, M.M.S.M. (1998). Eubacterial sigma-factors. FEMS Microbiology Reviews 22: 127–150.CrossRefPubMedGoogle Scholar

Specialized

  1. Blaszczak, A., Georgopoulos, C., Liberek, K. (1999). On the mechanism of FtsH-dependent degradation of the σ32-transcriptional regulator of Escherichia coli and the role of the DnaK chaperone machine. Molecular Microbiology 31: 157–166.CrossRefPubMedGoogle Scholar
  2. Carmona, M., Claverie-Martin, F., Magasanik, B. (1997). DNA bending and the initiation of transcription at σ54-dependent bacterial promoters. Proceedings of the National Academy of Sciences of the USA 94: 9568–9572.CrossRefPubMedGoogle Scholar
  3. Govantes, F., Andújar, E., Santero, E. (1999). Mechanism of translational coupling in the nifLAAperon of Klebsiella pneumoniae. The EMBO Journal 17: 2368–2377.CrossRefGoogle Scholar
  4. Halberg, R., Kroos, L. (1992). Fate of the SpoIIID switch protein during Bacillus subtilis sporulation depends on the mother-cell sigma factor, σσK. Journal of Molecular Biology 228: 840–849.CrossRefPubMedGoogle Scholar
  5. He, L., Soupene, E., Ninfa, A., Kustu, S. (1998). Physiological role for the GlnK protein of enteric bacteria: Relief of NifL inhibition under nitrogenlimiting conditions. Journal of Bacteriology 180: 6661–6667.PubMedGoogle Scholar
  6. Horlacher, R., Xavier, K.B., Santos, H., Diruggiero, J., Kossmann, M., Boos, W. (1998). Archaeal binding protein-dependent ABC transporter: molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. Journal of Bacteriology 180: 680–689.Google Scholar
  7. Jack, R., De Zamaroczy, M., Merrick, M. (1999). The signal transduction protein gInK is required for NifL-dependent nitrogen control of nif gene expression in Klebsiella pneumoniae. Journal of Bacteriology 181: 1156–1162.PubMedGoogle Scholar
  8. Kuo, Y.-P., Thompson, D.K., St. Jean, A., Charlebois, R.L., Daniels, C.J. (1997). Characterization of two heat shock genes from Haloferax volcanii: A model system for transcription regulation in the Archaea. Journal of Bacteriology 179: 6318–6324.Google Scholar
  9. Panagiotidis, C.H., Boos, W., Shuman, H.A. (1998). The ATP-binding cassette subunit of the maltose transporter MalK antagonizes MalT, the activator of the Escherichia coli mal regulon. Molecular icrobiology 30: 535–546.CrossRefGoogle Scholar
  10. Thiel, T., Lyons, E.M., Erker, J.C. (1997). Characterization of genes for a second mo-dependent nitrogenase in the cyanobacterium Anabaena variabilis. Journal of Bacteriology 179: 5222–5225.Google Scholar
  11. Wild, J., Walter, W.A., Gross, C.A., Altman, E. (1993). Accumulation of secretory protein precursors in Escherichia coli induces the heat shock response. Journal of Bacteriology 175: 3992–3997.PubMedGoogle Scholar
  12. Wu, H., Hu, Z., Liu, X.-Q. (1998). Protein trans-splicing by a split intein encoded in a split dnaE gene of Synechocystis sp. PCC06803. Proceedings of the National Academy of Sciences of the USA 95: 9226–9231.CrossRefPubMedGoogle Scholar
  13. Zhang, B., Kroos, L. (1997). A feedback loop regulates the switch from one sigma factor to the next in the cascade controlling Bacillus subtilis mother cell gene expression. Journal of Bacteriology 179: 6138–3144.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Edward A. Birge
    • 1
  1. 1.Department of MicrobiologyArizona State UniversityTempeUSA

Personalised recommendations