Advertisement

Special Lake Types

  • Robert G. Wetzel
  • Gene E. Likens
Chapter

Abstract

Certain of the vast number of lakes distributed over the surface of the Earth have special limnological characteristics. Bog lakes in the northern latitudes, reservoirs, anthropogenically acidified lakes in Scandinavia and eastern North America and below strip-mining operations, meromictic lakes, playa lakes in arid regions, and alpine lakes provide examples of a diversity of exceptional conditions that add to the fascination and enjoyment of limnological studies. We suggest you explore as many of these diverse habitats in your local area as possible. A discussion of several examples follows.

Keywords

Hydrogen Sulfide Sphagnum Moss Calcium Chloride Solution Meromictic Lake Playa Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anschütz, I. and F. Gessner. 1954. Der Ionaustausch bei Torfmossen (Sphagnum). Flora 141:178–236.Google Scholar
  2. Bott, T.L. 1983. Primary productivity in streams, pp. 29–53. In: G.W. Minshall and J.R. Barnes, Editors. Stream Ecology: The Testing of General Ecological Theory in Stream Ecosystems. Plenum, New York.CrossRefGoogle Scholar
  3. Brand, T. 1946. Anaerobiosis in Invertebrates. Biodynamica, Normandy, MO. 328 pp.Google Scholar
  4. Burgess, J.A. 1975. Organic acid excretion and the impact of Sphagnum mosses on their environment. Proc. Birmingham Nat. Hist. Phil. Soc. 23:21–24.Google Scholar
  5. Cline, J.D. 1969. Spectrophotometry determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14:454–458.CrossRefGoogle Scholar
  6. Clymo, R.S. 1963. Ion exchange in Sphagnum and its relation to bog ecology. Ann Bot. N.S. 27:309–324.Google Scholar
  7. Clymo, R.S. 1967. Control of cation concentrations, and in particular of pH, in Sphagnum dominated communities, pp. 273–284. In: H.L. Golterman and R.S. Clymo, Editors. Chemical Environment in the Aquatic Habitat. N.V. Noord-Hollandsche Uitgevers Maatschappij, Amsterdam.Google Scholar
  8. Culver, D.A. and G.J. Brunskill. 1969. Fayetteville Green Lake, New York. V. Studies of primary production and Zooplankton in a meromictic marsh lake. Limnol. Oceanogr. 14:862–873.CrossRefGoogle Scholar
  9. Frey, D.G. 1955. Längsee: A history of meromixis. Mem. 1st. Ital. Idrobiol. Suppl. 8:141–161.Google Scholar
  10. Glime, J.M., R.G. Wetzel, and B.J. Kennedy. 1982. The effects of bryophytes on succession from alkaline marsh to Sphagnum bog. Amer. Midland Nat. 108:209–223.CrossRefGoogle Scholar
  11. Gorham, E. 1987. The ecology and biogeochemistry of Sphagnum bogs in central and eastern North America, pp. 3–15. In: A.D. Laderman, Editor. Atlantic White Cedar Wetlands. Westview Press. Boulder, CO.Google Scholar
  12. Gorham, E. and H.E. Sanger. 1972. Fossil pigments in the surface sediments of a meromictic lake. Limnol. Oceanogr. 17:618–622.CrossRefGoogle Scholar
  13. Gorham, E., S.J. Eisenreich, J. Ford, and M.V. Santelmann. 1985. The chemistry of bog waters. pp. 339–362. In: W Stumm, Editor. Chemical Proceses in Lakes. Wiley, New York.Google Scholar
  14. Grahn, O. 1976. Macrophyte succession in Swedish lakes caused by deposition of airborne acid substances, pp. 519–530. In: L.S. Dochinger and T.A. Seliga, Editors. Proceedings of the First International Symposium on Acid Precipitation and Forest Ecosystem. USDA Forest Service Tech. Report NE 23.Google Scholar
  15. Hutchinson, G.E., et al. 1970. Ianula: An account of the history and development of the Lago di Monterosi, Latium, Italy. Trans. Amer. Phil. Soc, N.S. 60(4) 178 pp.Google Scholar
  16. Jackson, D.F. (ed.). 1967. Some Aspects of Meromixis. Dept. Civil Engr., Syracuse Univ., Syracuse, NY. 243 pp.Google Scholar
  17. Judd, J.H. 1970. Lake stratification caused by runoff from street deicing. Water Res. 4:521–532.CrossRefGoogle Scholar
  18. Minshall, G.W. 1978. Autotrophy in stream ecosystems. BioScience 18:161–111.Google Scholar
  19. Moore, P.D. and D.J. Bellamy. 1974. Peatlands. Elek Science, London. 221 pp.CrossRefGoogle Scholar
  20. Walker, K.F. and G.E. Likens. 1975. Meromixis and a reconsidered typology of lake circulation patterns. Verh. Internat. Verein. Limnol. 19:442–158.Google Scholar
  21. Wetzel, R.G. 1975. Primary production, pp. 230–247. In: B.A. Whitton, Editor. River Ecology. Blackwell, Oxford.Google Scholar
  22. Wetzel, R.G. 1979. The role of the littoral zone and detritus in lake metabolism. Arch. Hydrobiol. Beih. Ergebn. Limnol. 13:145–161.Google Scholar
  23. Wetzel, R.G. 1990a. Reservoir ecosystems: Conclusions and speculations, pp. 227–238. In: K.W. Thornton, B.L. Kimmel, and F.E. Payne, Editors. Reservoir Limnology: Ecological Perspectives. Wiley, New York.Google Scholar
  24. Wetzel, R.G. 1990b. Land-water interfaces: Metabolic and limnological regulators. Baldi Memorial Lecture. Verhand. Internat. Verein. Limnol. 24:6–24.Google Scholar
  25. Wetzel, R.G. 1999. Limnology: Lake and River Ecosystems. 3rd Edition. Academic Press, San Diego (in press).Google Scholar
  26. Wetzel, R.G. and A.K. Ward. 1992. Primary production, pp. 354–369. In: P. Calow and G.E. Petts, Editors. The Rivers Handbook. I. Hydrological and Ecological Principles. Blackwell Science Publishers, Oxford.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Robert G. Wetzel
    • 1
  • Gene E. Likens
    • 2
  1. 1.Department of Biology, College of Arts and SciencesUniversity of AlabamaTuscaloosaUSA
  2. 2.Institute of Ecosystem Studies, Cary ArboretumThe New York Botanical GardenMillbrookUSA

Personalised recommendations