Collection, Enumeration, and Biomass of Zooplankton

  • Robert G. Wetzel
  • Gene E. Likens


Zooplankton usually are distributed throughout a lake or reservoir. Most forms are motile, and thus their distribution both vertically and horizontally may be quite variable. Species have different habitat preferences that further accentuate spatial and temporal heterogeneity. Zooplankton are major herbivores as well as important predators in aquatic ecosystems. Therefore, to understand lake metabolism it is necessary to evaluate the biomass and the role of zooplankton in the ecosystem.

Quantitative collection of aquatic organisms within their natural habitats usually is difficult. The foremost problem is that only relatively small subsamples can be obtained from a population, which is often mobile, changing in size, and distributed in patches.

If zooplankton were distributed unevenly within a lake ecosystem, then discrete samples would grossly overestimate or underestimate the true population size. Thus characterization of the distribution of individuals is a prerequisite for quantitative sampling. Individuals may be dispersed randomly, contagiously, or uniformly (or various combinations of these) throughout the volume of a lake or reservoir (Fig. 11.1).

Errors associated with enumeration may be categorized into two types: (1) error associated with counting the individuals in a sample; and (2) errors in obtaining a representative sample of the population from a site within a lake, from the entire lake, or both. The purpose of this exercise is to examine these problems while, at the same time, attempting to characterize a zooplankton population for a lake.

Apparently random or uniform distributions are rather uncommon in zooplankton populations as distributions tend to be patchy (Tonolli, 1971; Levin and Segal, 1976). However, various scales of vertical and horizontal distance must be considered. A chi-square test may be used to test for contagion. This test is done by determining the significance of the difference between the observed distribution of individuals in unit volumes and a theoretical Poisson distribution for the same number of individuals and volumes (see Appendix 2). When the distribution is contagious, the degree of contagion can be estimated by the ratio of the variance to the mean. Ratios of 1 indicate randomness, >1 indicate contagion, and <1 indicate evenness.

The objectives of this exercise are
  1. 1.

    Evaluate counting procedures.

  2. 2.

    Compare various collection devices.

  3. 3.

    Characterize the population size, distribution, and biomass for a site and for an entire lake.



Water Bottle Zooplankton Population Large Zooplankton Entire Lake Nuclepore Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlstrom, E.H., J.D. Isaacs, J.R. Thrakill, and L.W. Kidd. 1958. High-speed plankton sampler. Fish Bull. Fish Wildl. Serv. 58(132):187–214.Google Scholar
  2. de Bernardi, R. 1984. Methods for the estimation of Zooplankton abundance, pp. 59–86. In: J.A. Downing and F.H. Rigler, Editors. . Blackwell, Oxford.Google Scholar
  3. Caron, D.A. 1983. Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl. Environ. Microbiol. 46:491–498.PubMedGoogle Scholar
  4. Carrick, H.J., G.L. Fahnenstiel, E.F. Stoermer, and R.G. Wetzel. 1991. The importance of zoo-plankton-protozoan trophic couplings in Lake Michigan. Limnol. Oceanogr. 36:1335–1345.CrossRefGoogle Scholar
  5. Clutter, R.I. and M. Anraku. 1968. Avoidance of samplers, pp. 57–76. In: D.J. Tranter and J.H. Fraser, Editors. Zooplankton Sampling. UNESCO Press, Paris.Google Scholar
  6. Dumont, H.J., I. Van de Velde, and S. Dumont. 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 79:75–97.CrossRefGoogle Scholar
  7. Edmondson, W.T. and G.G. Winberg (eds). 1971. A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. IBP Handbook No. 17. Blackwell, Oxford. 358 pp.Google Scholar
  8. Hall, D.J., WE. Cooper, and E.E. Werner. 1970. An experimental approach to the production dynamics and structure of freshwater animal communities. Limnol. Oceanogr. 15:839–928.CrossRefGoogle Scholar
  9. Hobbie, J.E., R.J. Daley, and S. Jasper. 1977. Use of Nuclepore filters for counting bacteria by fluorescent microscopy. Appl. Environ. Microbiol. 33:1225–1228.PubMedGoogle Scholar
  10. Isaacs, J.D. and L.W Kidd. 1953. Isaacs-Kidd midwater trawl. Final report. Scripps Inst. Oceanogr. (Ref. 53–3,1–18. Oceanographic Equipment Rept. No. 1).Google Scholar
  11. Juday, C. 1916. Limnological apparatus. Trans. Wisc. Acad. Sci. Arts Lett. 18(Pt. 2):566–592.Google Scholar
  12. Levin, S.A. and L.A. Segel. 1976. Hypothesis for origin of planktonic patchiness. Nature 259:659.CrossRefGoogle Scholar
  13. Likens, G.E. and J.J. Gilbert. 1970. Notes on quantitative sampling of natural populations of planktonic rotifers. Limnol. Oceanogr. 15:816–820.CrossRefGoogle Scholar
  14. Makarewicz, J.C. 1974. The community of Zooplankton and its production in Mirror Lake. Ph.D. Thesis. Cornell Univ., Ithaca. 206 pp.Google Scholar
  15. McCauley, E. 1984. The estimation of the abundance and biomass of Zooplankton in samples. pp. 228–265. In: J.A. Downing and F.H. Rigler, Editors. A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Blackwell, Oxford.Google Scholar
  16. McNaught, D.G. 1971. Appendix to Clarke-Bumpus plankton sampler, pp. 11–12. In: WT. Edmondson and G.G. Winberg, Editors. Secondary Productivity in Fresh Waters. Black-well, Oxford.Google Scholar
  17. Nauwerck, A. 1963. Die Beziehungen zwischen Zooplankton und Phytoplankton im See Erken. Symbol. Bot. Upsaliensis 17(5):1–163.Google Scholar
  18. Pennak, R.W. 1962. Quantitative Zooplankton sampling in littoral vegetation areas. Limnol. Oceanogr. 7:487–489.CrossRefGoogle Scholar
  19. Ruttner-Kolisko, A. 1977a. Comparison of various sampling techniques, and results of repeated sampling of planktonic rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8:13–18.Google Scholar
  20. Ruttner-Kolisko, A. 1977b. Suggestions for biomass calculation of planktonic rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8:11–16.Google Scholar
  21. Schindler, D.W. 1969. Two useful devices for vertical plankton and water sampling. J. Fish. Res. Bd. Canada 26:1948–1955.CrossRefGoogle Scholar
  22. Smyly, W.J.P. 1968. Some observations on the effect of sampling technique under different conditions on numbers of some freshwater planktonic Entomostroca and Rotifera caught by a water bottle. J. Nat. Hist. 2:569–575.CrossRefGoogle Scholar
  23. Steedman, H.F. (ed.) 1976. Zooplankton Fixation and Preservation. UNESCO Press, Paris. 350 pp.Google Scholar
  24. Szlauer, L. 1964. Reaction of Daphnia pulex de Geer to the approach of different objects. Pol. Arch. Hydrobiol. 12:15–16.Google Scholar
  25. Tonolli, V. 1971. Zooplankton, pp. 1–14. In: W.T. Edmondson and G.G. Winberg, Editors. A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. IBP Handbook No. 17. Blackwell, Oxford.Google Scholar
  26. Tranter, D.J. and J.H. Fraser (eds). 1968. Zooplankton Sampling. UNESCO Press, Paris. 174 pp.Google Scholar
  27. Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. Int. Ver. Limnol. 9. 38 pp.Google Scholar
  28. Welch, P.S. 1948. Limnological Methods. Blakiston, Philaldelphia. 381 pp.Google Scholar
  29. Wetzel, R.G. 1999. Limnology: Lake and River Ecosystems. 3rd Ed. Academic Press, New York (in press).Google Scholar
  30. Whipple, G.C. 1927. The Microscopy of Drinking Water. 4th Ed. Wiley & Sons, New York. 586 pp.Google Scholar
  31. Winberg, G.G. (ed). 1972. Methods for the Estimation of Production of Aquatic Animals. Academic Press, New York. 175 pp.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Robert G. Wetzel
    • 1
  • Gene E. Likens
    • 2
  1. 1.Department of Biology, College of Arts and SciencesUniversity of AlabamaTuscaloosaUSA
  2. 2.Institute of Ecosystem Studies, Cary ArboretumThe New York Botanical GardenMillbrookUSA

Personalised recommendations