Block Problems with a Special Condition for Coupling Variables

  • Vladimir Tsurkov
Part of the Applied Optimization book series (APOP, volume 51)


In many cases, a distinctive feature the problem calls for the development of a special method for its solution. Often, such a method can be generalized to a wider class of problems, and one can even formulate a certain fairly universal approach. Sometimes, this gives grounds for new problem statements in different fields. The method of iterative aggregation described in Chapter 2 may serve as such an example; this method was first constructed for a specific problem of branch planning and then extended to a wide class of hierarchical organization problems and led to the analysis of two-level systems of mathematical physics [24].


Feasible Solution Local Problem Dual Problem Linear Programming Problem Transportation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Chapter 4

  1. [1]
    Dantzig G.B. and Wolfe F., A Decomposition Algorithm for Linear Programming Problems, in Matematica (Mathematics), 1964, vol. 8, no. 1, pp. 151160.Google Scholar
  2. [2]
    Dantzig G.B. and Wolfe P., Decomposition Principle for Linear Programs, Oper. Res., 1960, vol. 8, no. 1, pp. 101–112.MATHCrossRefGoogle Scholar
  3. [3]
    Dantzig G.B., Linear Programming and Extensions, Princeton: Princeton Univ. Press, 1963.Google Scholar
  4. [4]
    Gale D., Teoriya lineinykh ekonomicheskikh modelei (The Theory of Linear Economic Models), New York: McGraw-Hill, 1960.Google Scholar
  5. [5]
    Gale D., Zamknutaya lineinaya model’ proizvodstva (A Closed Linear Production Model), in Lineinye neravenstva i smezhnye voprosy (Linear Inequalities and Related Topics), Moscow: Inostrannaya Literatura, 1959, pp. 382–396.Google Scholar
  6. [6]
    Goldman A.J. and Tucker A.W., Teoriya lineinogo programmirovaniya (The Theory of Linear Programming), in Lineinye neravenstva i smezhnye voprosy (Linear Inequalities and Related Topics), Moscow: Inostrannaya Literatura, 1959, pp. 172–207.Google Scholar
  7. [7]
    Kantorovich L.V. and Gavurin M.K., Primenenie matematicheskikh metodov v voprosakh analiza gruzopotokov (Application of Mathematical Methods to the Analysis of Freight Flows), in Problemy povysheniya effektivnosti raboty avtotransporta (Problems of Increasing the Efficiency of Motor Transport), Moscow: USSR Acad. Sci., 1949.Google Scholar
  8. [8]
    L’vov D.S., Mednitskii V.G., Mednitskii Yu.V., and Ovsienko, Yu.V., Ob ochenke effektivnosti funkchionorovaniya krupno-mashtabnykh khozyastvennykh ob ‘ektob (Evaluation of the Operation Efficiency of Large-Scale Industrial Objects), Ekon. Mat. Metody, 1996, vol. 32, no. 1, pp. 5–18.MATHGoogle Scholar
  9. [9]
    Lasdon L.S., Optimization Theory for Large-Scale Systems, New York: Macmillan, 1970.Google Scholar
  10. [10]
    Makarov V.L. and Rubinov A.M., Matematicheskaya teoriya ekonomicheskoi dinamiki i ravnovesiya (Mathematical Theory of Economic Dynamics and Equilibrium), Moscow: Nauka, 1973.Google Scholar
  11. [11]
    Mednitski Yu.V., On Decomposition of the Linear Programming Problem with Binding Constraints and Variables, Trudy 2-oi Moskovskoi mezhdunarodnoi konferentsii po issledovaniyu operatsii (Proc. of the 2nd Moscow Int. Conf. on OperationsResearch ), Moscow, 1998.Google Scholar
  12. [12]
    Mednitskii V.G. and Butorin N.N., Proizvodstvenno-transportnye zadachi bol’shoi razmernosti i reshenie ikh na EVM (Large-Scale Production—Transportation Problems and Their Solution by Computers), Moscow: Statistika, 1978.Google Scholar
  13. [13]
    Mednitskii V.G. and Mednitskii Yu.V., O dvukh novykh programmnykh sistemakh dlya formiravaniya i analiza zadach lineinogo programmirovaniya (On Two New Software Systems for the Formation and Analysis of Linear Pro- gramming Problems), Ekon. Mat. Metody, 1994, vol. 30, no. 3, pp. 142–154.Google Scholar
  14. [14]
    Mednitskii V.G., Mednitskii Yu.V., Kolbanov V.M., and Korolev V.G., Formy dinamicheskogo ravnovesiya zamknutoi ekonomiki (The Forms of Dynamic Equilibrium of Closed Economics), Ekon. Mat. Metody, 1998, vol. 34, no. 2, pp. 105–119.MATHGoogle Scholar
  15. [15]
    Mednitskii Yu.V. and Mednitskii V.G., On One Decomposition Scheme, Trudy Mezhdunarodnogo Simpoziuma “Ekonomiko-matematicheskie metody v APK”: Istoriya i perspektivy (Economic—Mathematical Methods in Agribusiness: History and Prospects ), Moscow, 1999.Google Scholar
  16. [16]
    Mednitskii Yu.V., Odekompozichii zadachi lineinogo programmirovaniya so svyazuyushchimi ogranicheniyami i peremennymi (On the Decomposition of Linear Programming Problems with Binding Constraints and Coupling Variables), Izv. Ross. Akad. Nauk, Teor. Sist. Upr., 1998, no. 4, pp. 134–140.Google Scholar
  17. [17]
    Mednitskii Yu.V., 0parallel’nom ispol’zovanii metody dekompozichii v pare dvoistvennykh zadach lineinogo programmirovaniya (On the Parallel Application of the Decomposition Method in a Pair of Dual Linear Programming Problems), Izv. Ross. Akad. Nauk, Teor. Sist. Upr., 1998, no. 1, pp. 107–112.Google Scholar
  18. [18]
    Mednitskii Yu.V., Issledovaniye metodov dekompozichii nekotorykh zadach lineinogo i vypuklogo programmirovaniya (The Study of Decomposition Methods for Certain Linear and Convex Programming Problems), Cand. Sci. Thesis, Computing Center, Russ. Acad. Sci., Moscow, 1999.Google Scholar
  19. [19]
    Mironov A.A. and Tsurkov V.I., Minimaks v transportnykh zadachakh (Minimax in Transportation Problems), Moscow: Nauka, 1997.Google Scholar
  20. [20]
    Nikaido H., Convex Structures and Economic Theory, New York: Academic, 1968.MATHGoogle Scholar
  21. [21]
    Ore O., Theory of Graphs, Providence: Am. Math. Soc., 1962.MATHGoogle Scholar
  22. [22]
    Reinfeld N.V. and Vogel W., Matematicheskow programmirovanie (Mathematical Programming), Moscow: Inostrannaya Literatura, 1960.MATHGoogle Scholar
  23. [23]
    Tsurkov V.I., Dekompozitsiya v zadachakh bol’shoi razmernosti (Decomposition in Problems of Large Dimension), Moscow: Nauka, 1981.MATHGoogle Scholar
  24. [24]
    Tsurkov V.I., Hierarchical Optimization and Mathematical Physics, Dordrecht/ Boston/London: Kluwer Academic Publishers, 2000.MATHGoogle Scholar
  25. [25]
    Yudin D.B. and Gol’shtein E.G., Zadachi i metody lineinogo programmirovaniya (Problems and Methods of Linear Programming), Moscow: Soy. Radio, 1961.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Vladimir Tsurkov
    • 1
  1. 1.Computing CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations