Skip to main content

Some New Algorithms for High-Precision Computation of Euler’s Constant

  • Chapter
Pi: A Source Book

Abstract

We describe several new algorithms for the high-precision computation of Euler’s constant γ = 0.577.... Using one of the algorithms, which is based on an identity involving Bessel functions, γ has been computed to 30,100 decimal places. By computing their regular continued fractions we show that, if γ or exp(γ) is of the form P/Q for integers P and Q, then |Q| >1015000

The work of the first author was supported in part by National Science Foundation grant 1–442427–21164–2 at the University of California, Berkeley. This work was also supported by the U. S. Department of Energy under Contract W-7405-ENG-48.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz & I. A. Stegun, handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington, D. C., 1964.

    Google Scholar 

  2. M. Beeler, R. W. Gosielt & R. Sciiroeilkl, “Ilakmem,” Memo No. 239, Artificial Intelligence Lab., Cambridge, Mass., 1972, pp. 70–71.

    Google Scholar 

  3. W. A. Beyer & M. S. Waterman, “Error analysis of a computation of Euler’s constant,” Math. Comp., v. 28, 1974, pp. 599–604. MR 49 #6555.

    Google Scholar 

  4. W. A. Beyer & M. S. Waterman, “Decimals and partial quotients of Euler’s constant and In 2,” UMT 19 Math. Comp., v. 28, 1974, p. 667. Errata: Math. Comp.,MTE 549, v. 32, 1978, pp. 317–318.

    Google Scholar 

  5. R. P. Brent, “The complexity of multiple-precision arithmetic,” Complexity of Computational Problem Solving (R. S. Anderssen and R. P. Brent, Eds.), Univ. of Queensland Press, Brisbane, 1976, pp. 126–165.

    Google Scholar 

  6. R. P. Brent, “Multiple-precision zero-finding methods and the complexity of elementary function evaluation,” Analytic Computational Complexity (J. F. Traub, Ed.), Academic Press, New York, 1976, pp. 151–176. MR 52 #15938, 54 #11843.

    Google Scholar 

  7. R. P. Brent, “Computation of the regular continued fraction for Euler’s constant,”Math. Comp., v. 31, 1977, pp. 771–777. MR 55 #9490.

    Google Scholar 

  8. R. P. Brent, “?’ and exp(y) to 20700D and their regular continued fractions to 20000 partial quotients,” UMT 1, Math. Co,np., v. 32, 1978, p. 311.

    Google Scholar 

  9. R. l. Brent, “A Fortran multiple-precision arithmetic package,” ACM Trans. Math. Software, v. 4, 1978, pp. 57–70.

    Google Scholar 

  10. R. P. Brent, “Euler’s constant and its exponential to 30,100 decimals,” Computing Research Group, Australian National University, Sept. 1978. Submitted to Math. Comp. UMT file.

    Google Scholar 

  11. R. P. Brent & E. M. Mcmillan, “The first 29,000 partial quotients in the regular continued fractions for Euler’s constant and its exponential,” submitted to Math. Comp. UMT file.

    Google Scholar 

  12. J. W. L. Glaisher, “History of Euler’s constant,” Messenger of Math., v. 1, 1872, pp. 25–30.

    Google Scholar 

  13. A. YA. Khintci-Line (A. JA. Hingin), Continued Fractions,3rd ed., (English transl. by P. Wynn), Noordhoff, Groningen, 1963. MR 28 #5038.

    Google Scholar 

  14. G. F. B. Riemann, “Zur Theorie der Nobili’schen Farbenringe,” Poggendorff’s Annalen der Physik und Chemie, Bd. 95, 1855, pp. 130–139. (Reprinted in Bernhard Riemann’s Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass Teubner, Leipzig, 1876, pp. 54–61.)

    Google Scholar 

  15. A. Schonhage & V. Strassen, “Schnelle Multiplikation grosser Zahlen,” Computing, v. 7, 1971, pp. 281–292.

    Article  MathSciNet  Google Scholar 

  16. D. W. Sweeney, “On the computation of Euler’s constant,” Math. Comp., v. 17, 1963, pp. 170–178. MR 28 #3522.

    Google Scholar 

  17. A. Van Der Poorten, “A proof that Euler missed—Apéry’s proof of the irrationality of j’(3),” Mathematical Intelligence, v. 1, 1979, pp. 196–203.

    Google Scholar 

  18. H. Wall, Analytic Theory of Continued Fractions, Van Nostrand, New York, 1948.

    MATH  Google Scholar 

  19. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge Univ. Press, London, 1944.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brent, R.P., McMillan, E.M. (2000). Some New Algorithms for High-Precision Computation of Euler’s Constant. In: Pi: A Source Book. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3240-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3240-5_50

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3242-9

  • Online ISBN: 978-1-4757-3240-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics