Regulation of p53 Function in Normal and Malignant Cells

  • Vincenzo Tortora
  • Paola Bontempo
  • Mariantonietta Verdicchio
  • Ignazio Armetta
  • Ciro Abbondanza
  • Ettore Maria Schiavone
  • Ernesto Nola
  • Giovanni Alfredo Puca
  • Anna Maria Molinari
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 472)


Tumors arise from single cells that develop into large populations sharing a series of genetic alterations. The single phenotypic feature that best characterizes a transformed cell is its ability to proliferate indefinitely when left undisturbed.1 The recognition of specific genes that modulate proliferation, has led to studies on the cell cycle.2 Homeostasis has a great importance in the development of tumors and is regulated by a balance among proliferation, the arrest of growth and programmed death (apoptosis).


Mouse Double Minute Severe Combine Immune Deficient GADD45 Gene Human Bone Marrow Cell Severe Combine Immune Deficient Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop J.M., (1987). The molecular genetics of cancer. Science, 235: 305–311.PubMedCrossRefGoogle Scholar
  2. 2.
    Follette P.J. and O’Farrell P.H., (1997). Connecting cell behavior to pattering: lessons from the cell cycle. Cell, 88: 309–314.PubMedCrossRefGoogle Scholar
  3. 3.
    Bukholm I.K., Nesland J.M., Karesen R., Jacobsen U., and Borresen A.L., (1997). Interaction between bcl-2 and p21 (WAF1/CIP1) in breast carcinomas with wild-type p53. Int. J. Cancer, 73 (1): 38–41.PubMedCrossRefGoogle Scholar
  4. 4.
    Lane D.P., (1992). P53, the guardian of the genome. Nature, 358: 15–16.PubMedCrossRefGoogle Scholar
  5. 5.
    Slichenmyer W.J., Nelson W.G., Slebos R.J., and Kastan M.B., (1993). Loss of a p53-associated G1 Checkpoints Does Not Decrease Cell Survival Following DNA Damage. Cancer Res., 53: 4164–4168.PubMedGoogle Scholar
  6. 6.
    Malkin D., (1994). Germline p53 mutations and heritable cancer. Annu. Rev. Genet., 28: 443–465.PubMedCrossRefGoogle Scholar
  7. 7.
    Prives C., (1994). How loops, ß Sheets, and a Helices help us to understand p53. Cell, 78: 543–546.PubMedCrossRefGoogle Scholar
  8. 8.
    Levine A.J., (1997). p53, the cellular gatekeeper for growth and division. Cell, 88:323–331.Google Scholar
  9. 9.
    Lee S., Elenbaas B., Levine A., and Griffith J., (1995). p53 and its 14kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell, 81: 1013–1020.Google Scholar
  10. 10.
    Komarova E.A., Zelnick R.C., Chin D., Zeremski M., and Gudkov A.V., (1997). Intracellular localization of p53 tumor suppressor protein in y-irradiated cells is cell cycle regulated and determined by the nucleus. Cancer Res., 57: 5217–5220.PubMedGoogle Scholar
  11. 11.
    Molinari A.M., Armetta I., Napolitano M., Schiavulli M., Bontempo R, and e Puca G.A. La capacità dell’antioncogene p53 di legare specifiche sequenze di DNA è modulata in vitro dalla presenza di oligonucleotidi. XXII Congresso Nazionale SIP.Google Scholar
  12. 12.
    Lane D., (1998). Awakening angels. Nature, 394: 616–617.PubMedCrossRefGoogle Scholar
  13. 13.
    Woo R.A., McLure K.G., Lees-Miller S.P., and Lee R, (1998). DNA-dependent protein kinase acts upstream of p53 in response to DNA damage. Nature, 394: 700–704.PubMedCrossRefGoogle Scholar
  14. 14.
    Waterman M.J., Stavridi E.S., Waterman J.L., and Halazonetis T.D., (1998). ATM–dependent activation of p53 involves dephosphorylation and association with 14–3–3 proteins. Nature Genet., 19 (2): 175 – 178.PubMedCrossRefGoogle Scholar
  15. 15.
    Almong N. and Rotter V., (1997). Involement of p53 in cell differentiation and development. Biochimica et Biophysica Acta, 1333 F1 - F27.Google Scholar
  16. 16.
    Prokocimer M. and Rotter V., (1994). Structure and Function of p53 in Normal Cells and Their Aberrations in Cancer Cells: Projection on the Hematologic Cell Lineages. Blood, 84: 2391–2411.PubMedGoogle Scholar
  17. 17.
    Imamura J., Miyoshi I., and Koffler R, (1994). p53 in Hematologic Malignancies. Blood, 84: 2412–2421.Google Scholar
  18. 18.
    Soddu S., Blandino G., Scardigli R., Coen S., and Sacchi A., (1996). Interference with p53 Protein Inhibits Hematopoietic and Muscle Differentiation. The Journal of Cell Biology, 134: 193–204.PubMedCrossRefGoogle Scholar
  19. 19.
    Amesterdam A., Keren-Tal I., and Aharoni D., (1996). Ross-talk between cAMP and p53-generated signals in induction of differentiation and apoptosis in steroidogenic granulosa cells. Steroid 61: 252–256.CrossRefGoogle Scholar
  20. 20.
    Eizenberg O., Gottlieb E., and Schwartz M., (1996). p53 plays a Regulatory Role in Differentiation and Apoptosis of Central Nervous System-Associated Cells. Molecular and Cellular Biology, 16: 5178–5185.Google Scholar
  21. 21.
    Schmid P., Lorenz A., Hameister H., and Montenarh M., (1991). Expression of p53 during mouse embryogenesis. Development, 113: 857–865.PubMedGoogle Scholar
  22. 22.
    Sjoblom T. and Landetie J., (1996). Expression of p53 in normal and y-irradiated rat testis suggests a role for p53 in meiotic recombination and repair. Oncogene, 12: 2499–2505.PubMedGoogle Scholar
  23. 23.
    Mukhopadhyay D., Tsiokas L., and Sukhatme V.P., (1995). Wild-Type p53 and v-Src Exert Opposing Influences on Human Vascular Endothelial Growth Factor Gene Expression. Cancer Research 55: 6161–6165.PubMedGoogle Scholar
  24. 24.
    Dameron K.M., Volpert O.V., Tainsky M.A., and Bouck N., (1994). Control of Angiogenesis in Fibroblasts by p53 Regulation of Thrombospondin-1. Science 256: 1582–1584.CrossRefGoogle Scholar
  25. 25.
    Nelson W.G. and Kastan M.B., (1994). DNA Strand Breaks: the DNA Template Alterations That Trigger p53-Dependent DNA Damage Response Pathways. Molecular and Cellular Biology, 14: 1815–1823.PubMedGoogle Scholar
  26. 26.
    Aloni-Gristein R., Zan-Bar I., Alboum I., and Rotter V., (1993). Wilde type p53 functions as a control protein in the differentiation pathway of the B-cell linage. Oncogene, 8: 3297–3305.Google Scholar
  27. 27.
    Zhan Q., Chen I.T., Antinore M.J., and Fornace A.J., (1998). Tumor suppressor p53 can partecipate in transcriptional induction of the GADD45 promoter in absence of direct DNA binding. Mol. Cell Biol., May 18 (5): 2768–2778.Google Scholar
  28. 28.
    Zauberman A., Barak Y., Ragimov N., Levy N., and Oren M., (1993). Sequence-specific DNA binding by p53: identification of target sites and lack of binding to p53-MDM2 complexes. The EMBO Journal, 12 (7): 2799–2808.PubMedGoogle Scholar
  29. 29.
    Cayrol C., Knibiehler M., and Ducommum B., (1998). p21 binding to PCNA causes G1 and G2 cell cycle arrest in p53-deficient cells. Oncogene, 16: 311–320.Google Scholar
  30. 30.
    Bates S., Phillips C., (1998). p14 ARF links the tumor suppressor RB and p53. Nature, 395: 124–125.Google Scholar
  31. 31.
    Guillouf C., Rosselli E, Krishnaraju K., Moustacchi E., Hoffman B., and Liebermann D.A., (1995). p53 involvement in control of G2 exit of the cell cycle: role in DNA damage-induced apoptosis. Oncogene, 10: 2263–2270.Google Scholar
  32. 32.
    Huang Y., Ray S., Reed J.C., Ibrado A.M., Tang C., Nawabi A., and Bhalla K., (1997). Estrogen increases intracellular p26Bcl-2 to p21Bax ratios and inihibits taxol-induced apoptosis of human breast cancer MCF-7 cells. Breast Cancer Res. Treat., 42 (1): 73–81.CrossRefGoogle Scholar
  33. 33.
    Miyashita T. and Reed J.C., (1995). Tumor Suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 80: 293–299.PubMedCrossRefGoogle Scholar
  34. 34.
    Boise L.H., Gonzales-Garcia M., Postema C.E., Ding L., and Thompson C.B., (1993). bel-x, a bcl-2 related gene that functions as a dominant regolator of apoptotic cell death. Cell, 74: 597–608.Google Scholar
  35. 35.
    Miyashita T., Harigai M., Hanada M., and Reed J.C., (1993). Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Research, 54: 3131–3135.Google Scholar
  36. 36.
    Bian J. and Sun Yi, (1997). p53CP, a putative p53 competing protein that specifically binds to the consensus p53 DNA binding sites: A third member of the p53 family?. Proc. Natl. Acad. Sci. USA, 94: 14753–14758.Google Scholar
  37. 37.
    Osada M., Ohba M., Kawahara C., and Ikawa S., (1998). Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nature Medicine vol. 4 n. 7: 839–843.PubMedCrossRefGoogle Scholar
  38. 38.
    Trink B., Okami K., Wu L., Sriuranpong V., Jen J., and Sidransky D., (1998). A new human p53 homologue. Nature Medicine, 4 (7): 747.PubMedCrossRefGoogle Scholar
  39. 39.
    Osada M., Ohba M., Kawahara C., and Ikawa S, (1998). Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nature Medicine 4 (7): 839–843.PubMedCrossRefGoogle Scholar
  40. 40.
    Liebermann D.A., Hoffman B., and Steinman R.A., (1995). Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene, 11: 199–210.PubMedGoogle Scholar
  41. 41.
    Avantaggiati M.L., Ogryzko V., Gardner K., Giordano A., Levine A.S., and Kelly K., (1997). Recruitment of p300/CBP in p53-Dependent Signal Pathways. Cell, 89: 1175–1184.PubMedCrossRefGoogle Scholar
  42. 42.
    Lee Chang-Woo, Sorensen T.S., Shikama N., and La Thangue N.B., (1998). Functional interplay between p53 and E2F through co-activator p300. Oncogene, 16: 2695–2710.CrossRefGoogle Scholar
  43. 43.
    Dickson R.B. and Lippman M.E., (1995). Growth factors in breast cancer. Endocrine Reviews, 16 (5): 559–583.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Vincenzo Tortora
    • 1
  • Paola Bontempo
    • 1
  • Mariantonietta Verdicchio
    • 1
  • Ignazio Armetta
    • 1
  • Ciro Abbondanza
    • 1
  • Ettore Maria Schiavone
    • 2
  • Ernesto Nola
    • 1
  • Giovanni Alfredo Puca
    • 1
  • Anna Maria Molinari
    • 1
  1. 1.Institute of General Pathology and OncologySecond University of NaplesNaplesItaly
  2. 2.Division of Hematology 2. Cardarelli HospitalNapoliItaly

Personalised recommendations