Carcinogen-DNA Adducts as Tools in Risk Assessment

  • Luisa Airoldi
  • Roberta Pastorelli
  • Cinzia Magagnotti
  • Roberto Fanelli
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 472)


Effective strategies for preventing human cancer resulting from exposure to chemical carcinogens of environmental, occupational or life-style sources, require the identification of the carcinogens to which people are exposed and the evaluation of the degree of exposure. The use of biological markers to detect such exposure and the early events in the process of carcinogenesis has increased greatly in recent years and their use is expected to be of help for the assessment of future disease risk.1–3


Polycyclic Aromatic Hydrocarbon Chemical Carcinogen Synchronous Fluorescence Heterocyclic Aromatic Amine Synchronous Fluorescence Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Perera, F.P. Molecular epidemiology: insights into cancer susceptibility, risk assessment, and prevention. J. Natl. Cancer Inst., 88: 496–509, 1996.PubMedCrossRefGoogle Scholar
  2. 2.
    La, D.K. and Swenberg, J.A. DNA adducts: biological markers of exposure and potential applications to risk assessment. Mutat. Res., 365: 129–146, 1996.PubMedCrossRefGoogle Scholar
  3. 3.
    Dale, C.M. and Garner, R.C. Measurement of DNA adducts in humans after complex mixture exposure. Food Chem. Toxicol., 34: 905–919, 1996.PubMedCrossRefGoogle Scholar
  4. 4.
    Miller, E.C. and Miller, J.A. Mechanisms of chemical carcinogenesis. Cancer, 47: 1055–1064, 1981.PubMedCrossRefGoogle Scholar
  5. 5.
    Wogan, G.N. Molecular epidemiology in cancer risk assessment and prevention: Recent progress and avenues for future research. Environ. Health Perspect., 98: 167–178, 1992.CrossRefGoogle Scholar
  6. 6.
    Skipper, P.L. and Tannenbaum, S.R. Protein adducts in the molecular dosimetry of chemical carcinogens. Carcinogenesis, 11: 507–518, 1990.PubMedCrossRefGoogle Scholar
  7. 7.
    Harris, C.C. Chemical and physical carcinogenesis: advances and perspectives for the 1990s. Cancer Res., 51: 5023s - 5044s, 1991.PubMedGoogle Scholar
  8. 8.
    Swenberg, J.A., Fedtke, N., Fennell, T.R., and Walker, V.E. Relationships between carcinogen exposure, DNA adducts and carcinogenesis. In: D.B. Clayson, I.C. Munro, P. Shubik, and J.A. Swenberg (eds.), Progress in Predictive Toxicology, pp. 161–184, Amsterdam: Elsevier. 1990.Google Scholar
  9. 9.
    Brookes, P. and Lawley, P.D. Evidence for the binding of polynuclear aromatic hydrocarbons to the nucleic acids of mouse skin: relation between carcinogenic power of the hydrocarbons and their binding to deoxyribonucleic acid. Nature, 202: 781–784, 1964.PubMedCrossRefGoogle Scholar
  10. 10.
    Lutz, W.K. Quantitative evaluation of DNA binding data for risk estimation and for classification of direct and indirect carcinogens. J. Cancer Res. Clin. Oncol., 112: 85–91, 1986.Google Scholar
  11. 11.
    Poirier, M.C. The use of carcinogen-DNA adduct antisera for quantitation and localization of genomic damage in animal models and the human population. Environ. Mutagen., 6: 879–887, 1984.PubMedCrossRefGoogle Scholar
  12. 12.
    Wogan, G.N. and Gorelick, N.J. Chemical and biochemical dosimetry of exposure to genotoxic chemicals. Environ. Health Perspect., 62: 5–18, 1985.PubMedCrossRefGoogle Scholar
  13. 13.
    Nesnow, S., Ross, J.A., Mass, M.J., and Stoner, G.D. Mechanistic relationships between DNA adducts, oncogene mutations, and lung tumorigenesis in strain A mice. Exp. Lung Res., 24: 395–405, 1998.PubMedCrossRefGoogle Scholar
  14. 14.
    Denissenko, M.F., Pao, A., Tang, M., and Pfeifer, G.P. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science, 274: 430–432, 1996.PubMedCrossRefGoogle Scholar
  15. 15.
    Gupta, R.C. Nonrandom binding of the carcinogen N-hydroxy-2-acetylaminofluorene to repetitive sequences of rat liver DNA in vivo. Proc. Natl. Acad. Sci. USA, 81: 6943–6947, 1984.CrossRefGoogle Scholar
  16. 16.
    Dipple, A. DNA adducts of chemical carcinogens. Carcinogenesis, 16: 437–441, 1995.PubMedCrossRefGoogle Scholar
  17. 17.
    Loveless, A. Possibile relevance of O-6 alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and nitrosamides. Nature, 223: 206–207, 1969.PubMedCrossRefGoogle Scholar
  18. 18.
    Singer, B. N-nitroso alkylating agents: formation and persistence of alkyl derivatives in mammalian nucleic acids as contributing factors in carcinogenesis. J. Natl. Cancer Inst., 62: 1329–1339, 1979.PubMedGoogle Scholar
  19. 19.
    Saffhill, R., Margison, G.P., and O’Connor, P.J. Mechanisms of carcinogenesis induced by alkylating agents. Biochim. Biophys. Acta, 823: 111–145, 1985.PubMedGoogle Scholar
  20. 20.
    Jerina, D.M., Chadha, A., Cheh, A.M., Schurdak, M.E., Wood, A.W., and Sayer, J.M. Covalent binding of bay-region diol epoxides to nucleic acids. Adv. Exp. Med. Biol., 283: 533–553, 1991.PubMedCrossRefGoogle Scholar
  21. 21.
    Jernstrom, B. and Graslund, A. Covalent binding of benzo[a]pyrene 7,8-dihydrodiol 9,10-epoxides to DNA: molecular structures, induced mutations, and biological consequences. Biophys. Chem., 49: 185–199, 1994.PubMedCrossRefGoogle Scholar
  22. 22.
    Humphreys, W.G., Kadlubar, F.F., and Guengerich, F.P. Mechanism of C8 alkylation of guanine residues by activated arylamines: evidence for initial adduct formation at the N7 position. Proc. Natl. Acad. Sci. USA, 89: 8278–8282, 1992.PubMedCrossRefGoogle Scholar
  23. 23.
    Essigmann, J.M., Croy, R.G., Nadzan, A.M., Busby, W.F.,Jr., Reinhold, V.N., Buchi, G., and Wogan, G.N. Structural identification of the major DNA adduct formed by aflatoxin B1 in vitro. Proc. Natl. Acad. Sci. USA, 74: 1870–1874, 1977.Google Scholar
  24. 24.
    Croy, R.G., Essigmann, J.M., Reinhold, V.N., and Wogan, G.N. Identification of the principal aflatoxin B1-DNA adduct formed in vivo in rat liver. Proc. Natl. Acad. Sci. USA, 75: 1745–1749, 1978.PubMedCrossRefGoogle Scholar
  25. 25.
    Phillips, D.H., Hemminki, K., Alhonen, A., Hewer, A., and Grover, P.L. Monitoring occupational exposure to carcinogens: detection by 32P-postlabelling of aromatic DNA adducts in white blood cells of iron foundry workers. Mutat. Res., 204: 531–541, 1988.PubMedCrossRefGoogle Scholar
  26. 26.
    Cuzick, J., Routledge, M.N., Jenkins, D., and Garner, R.C. DNA adducts in different tissues of smokers and non-smokers. Int. J. Cancer, 45: 673–678, 1990.PubMedCrossRefGoogle Scholar
  27. 27.
    Talaska, G., Schamer, M., Skipper, P, Tannenbaum, S., Caporaso, N., Unruh, L., Kadlubar, PF., Bartsch, H., Malaveille, C., and Vineis, P Detection of carcinogen-DNA adducts in exfoliated urothelial cells of cigarette smokers: association with smoking, hemoglobin adducts, and urinary mutagenicity. Cancer Epidemiol. Biomarkers. Prey., 1: 61–66, 1991.Google Scholar
  28. 28.
    Hsu, T.M., Zhang, Y.J., and Santella, R.M. Immunoperoxidase quantitation of 4-aminobiphenyl-and polycyclic aromatic hydrocarbon-DNA adducts in exfoliated oral and urothelial cells of smokers and nonsmokers. Cancer Epidemiol. Biomarkers. Prev., 6: 193–199, 1997.Google Scholar
  29. 29.
    Talaska, G., al-Juburi, A.Z., and Kadlubar, F.F. Smoking related carcinogen-DNA adducts in biopsy samples of human urinary bladder: identification of N-(deoxyguanosin-8-yl)-4-aminobiphenyl as a major adduct. Proc. Natl. Acad. Sci. USA, 88: 5350–5354, 1991.PubMedCrossRefGoogle Scholar
  30. 30.
    Arnould, J.P, Verhoest, P., Bach, V., Libert, J.P., and Belegaud, J. Detection of benzo[a]pyrene-DNA adducts in human placenta and umbilical cord blood. Hum. Exp. Toxicol., 16: 716–721, 1997.CrossRefGoogle Scholar
  31. 31.
    Shuker, D.E.G. and Farmer, P.B. Relevance of urinary DNA adducts as markers of carcinogen exposure. Chem. Res. Toxicol., 5: 450–460, 1992.PubMedCrossRefGoogle Scholar
  32. 32.
    Groopman, J.D., Donahue, P.R., Zhu, J.Q., Chen, J.S., and Wogan, G.N. Aflatoxin metabolism in humans: detection of metabolites and nucleic acid adducts in urine by affinity chromatography. Proc. Natl. Acad. Sci. USA, 82: 6492–6496, 1985.PubMedCrossRefGoogle Scholar
  33. 33.
    Gupta, R.C., Reddy, M.V., and Randerath, K. 32P-postlabeling analysis of non-radioactive aromatic carcinogen—DNA adducts. Carcinogenesis, 3: 1081–1092, 1982.PubMedCrossRefGoogle Scholar
  34. 34.
    Gupta, R.C. 32P-postlabelling analysis of bulky aromatic adducts. IARC Sci. Publ., 124: 11–23, 1993.Google Scholar
  35. 35.
    Beach, A.C. and Gupta, R.C. Human biomonitoring and the 32P-postlabeling assay. Carcinogenesis, 13: 1053–1074, 1992.PubMedCrossRefGoogle Scholar
  36. 36.
    Reddy, M.V. and Randerath, K. Nuclease Pl-mediated enhancement of sensitivity of 32Ppostlabeling test for structurally diverse DNA adducts. Carcinogenesis, 7: 1543–1551, 1986.PubMedCrossRefGoogle Scholar
  37. 37.
    Levy, G.N. and Weber, W.W. High-performance liquid chromatographic analysis of 32P-postlabeled DNA-aromatic carcinogen adducts. Anal. Biochem., 174: 381–392, 1988.PubMedCrossRefGoogle Scholar
  38. 38.
    Poirier, M.C. Human exposure monitoring, dosimetry, and cancer risk assessment: the use of antisera specific for carcinogen-DNA adducts and carcinogen-modified DNA. Drug Metab. Rev., 26: 87–109, 1994.Google Scholar
  39. 39.
    Strickland, P.T. and Boyle, J.M. Immunoassay of carcinogen-modified DNA. Prog. Nucleic Acid Res. Mol. Biol., 31: 1–58, 1984.PubMedCrossRefGoogle Scholar
  40. 40.
    Kriek, E., Den Engelse, L., Scherer, E., and Westra, J.G. Formation of DNA modifications by chemical carcinogens. Identification, localization, and quantification. Biochim. Biophys. Acta, 738: 181–201, 1984.PubMedGoogle Scholar
  41. 41.
    Harris, C.C., Yolken, R.H., and Hsu, I-C. Enzyme immunoassays: applications in cancer research. In: H. Busch and L.C. Yeoman (eds.), Methods in Cancer Research, Vol. XX, pp. 213–243, New York: Academic Press. 1982.Google Scholar
  42. 42.
    Hsu, I.C., Poirier, M.C., Yuspa, S.H., Grunberger, D., Weinstein, I.B., Yolken, R.H., and Harris, C.C. Measurement of benzo(a)pyrene-DNA adducts by enzyme immunoassays and radioimmunoassay. Cancer Res., 41: 1091–1095, 1981.PubMedGoogle Scholar
  43. 43.
    King, M.M., Cuzick, J., Jenkins, D., Routledge, M.N., and Garner, R.C. Immunoaffinity concentration of human lung DNA adducts using an anti-benzo[a]pyrene-diol-epoxide-DNA antibody. Analysis by 32P-postlabelling or ELISA. Mutat. Res., 292: 113–122, 1993.PubMedCrossRefGoogle Scholar
  44. 44.
    Airoldi, L., Magagnotti, C., Chiappetta, L., Bonfanti, M., Pastorelli, R., and Fanelli, R. Simultaneous immunoaffinity purification of 06-methyl, 06-ethyl-, 06-propyl-and, 06-butylguanine and their analysis by gas chromatography/mass spectrometry. Carcinogenesis, 16: 2247–2250, 1995.PubMedCrossRefGoogle Scholar
  45. 45.
    Pastorelli, R., Guanci, M., Cerri, A., Negri, E., La Vecchia, C., Fumagalli, F, Mezzetti, M., Cappelli, R., Panigalli, T., Fanelli, R., and Airoldi, L. Impact of inherited polymorphisms in glutathione S-transferase Ml, microsomal epoxide hydrolase, cytochrome P450 enzymes on DNA, and blood protein adducts of benzo(a)pyrene-diolepoxide. Cancer Epidemiol. Biomarkers. Prev., 7: 703–709, 1998.Google Scholar
  46. 46.
    Vahakangas, K., Haugen, A., and Harris, C.C. An applied synchronous fluorescence spectrophotometric assay to study benzo[a]pyrene-diolepoxide-DNA adducts. Carcinogenesis, 6: 1109–1115, 1985.PubMedCrossRefGoogle Scholar
  47. 47.
    Autrup, H., Bradley, K.A., Shamsuddin, A.K.M., Wakhisi, J., and Wasunna, A. Detection of putative adduct with fluorescence characteristics identical to 2,3-dihydro-2-(7’-guanyl)-3-hydroxyaflatoxin B1 in human urine collected in Murang’a district, Kenya. Carcinogenesis, 4: 1193–1195, 1983.CrossRefGoogle Scholar
  48. 48.
    Autrup, H., Wakhisi, J., Vahakangas, K., Wasunna, A., and Harris, C.C. Detection of 8,9-dihydro-(7’guanyl)-9-hydroxyaflatoxin B1 in human urine. Environ. Health Perspect., 62: 105–108, 1985.PubMedGoogle Scholar
  49. 49.
    Sanders, M.J., Cooper, R.S., Jankowiak, R., Small, G.J., Heisig, V., and Jeffrey, A.M. Identification of polycyclic aromatic hydrocarbon metabolites and DNA adducts in mixtures using fluorescence line narrowing spectrometry. Anal. Chem., 58: 816–820, 1986.PubMedCrossRefGoogle Scholar
  50. 50.
    Strickland, P.T., Routledge, M.N., and Dipple, A. Methodologies for measuring carcinogen adducts in humans. Cancer Epidemiol. Biomarkers Prev., 2: 607–619, 1993.Google Scholar
  51. 51.
    Farmer, P.B., Bailey, E., Naylor, S., Anderson, D., Brooks, A., Cushnir, J., Lamb, J.H., Sepai, O., and Tang, Y.S. Identification of endogenous electrophiles by means of mass spectrometric determination of protein and DNA adducts. Environ. Health Perspect., 99: 19–24, 1993.PubMedCrossRefGoogle Scholar
  52. 52.
    Lin, D., Lay, J.O.,Jr., Bryant, M.S., Malaveille, C., Friesen, M., Bartsch, H., Lang, N.P., and Kadlubar, F.F. Analysis of 4-aminobiphenyl-DNA adducts in human urinary bladder and lung by alkaline hydrolysis and negative ion gas chromatography-mass spectrometry. Environ. Health Perspect., 102 Suppl 6: 11–16, 1994.Google Scholar
  53. 53.
    Friesen, M.D., Kaderlik, K., Lin, D., Garren, L., Bartsch, H., Lang, N.P., and Kadlubar, F.F. Analysis of DNA adducts of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in rat and human tissues by alkaline hydrolysis and gas chromatography/electron capture mass spectrometry: Validation by comparison with 32P-postlabeling. Chem. Res. Toxicol., 7: 733–739, 1994.PubMedCrossRefGoogle Scholar
  54. 54.
    Kambouris, S.J., Chaudhary, A.K., and Blair, I.A. Liquid chromatography/electrospray ionization tandem mass spectroscopy (LC/ESI MS/MS) analysis of 1,2-epoxybutene adducts of purine deoxynucleosides. Toxicology, 113: 331–335, 1996.PubMedCrossRefGoogle Scholar
  55. 55.
    Tang, D., Santella, R.M., Blackwood, A.M., Young, T.-L., Mayer, J., Jaretzki, A., Grantham, S., Tsai, W-Y., and Perera, F.P. A molecular epidemiological case-control study of lung cancer. Cancer Epidemiol. Biomarkers Prey., 4: 341–346, 1995.Google Scholar
  56. 56.
    Peluso, M., Airoldi, L., Armelle, M., Martone, T., Coda, R., Malaveille, C., Giacomelli, G., Terrone, C., Casetta, G., and Vineis, R White blood cell DNA adducts, smoking, and NAT2 and GSTM1 genotypes in bladder cancer: a case-control study. Cancer Epidemiol. Biomarkers Prey., 7: 341–346, 1998.Google Scholar
  57. 57.
    Ross, R.K., Yuan, J.-M., Yu, M.C., Wogan, G.N., Qian, G.-S., Tu, J.-T., Groopman, J.D., Gao, Y.-T., and Henderson, B.E. Urinary aflatoxin biomarkers and risk of hepatocellular carcinoma. Lancet, 339: 943–946, 1992.PubMedCrossRefGoogle Scholar
  58. 58.
    Qian, G.-S., Ross, R.K., Yu, M.C., Yuan, J.-M., GaoY.-T., Henderson, B.E., Wogan, G.N., and Groopman, J.D. A follow-up study of urinary markers of afiatoxin exposure and liver cancer risk in Shanghai, People’s Republic of China. Cancer Epidemiol. Biomarkers Prey., 3: 3–10, 1994.Google Scholar
  59. 59.
    Binkova, B., Topinka, J., Mrackova, G., Gajdosova, D., Vidova, R, Stavkova, Z., Pilcik, RV., Rimar, V., Dobias, L., Farmer, P.B., and Sram, R.J. Coke oven workers study: the effect of exposure and GSTM1 and NAT2 genotypes on DNA adduct levels in white blood cells and lymphocytes as determined by 32P-postlabelling. Mutat. Res., 416: 67–84, 1998.PubMedCrossRefGoogle Scholar
  60. 60.
    Peluso, M., Merlo, E, Munnia, A., Valerio, E, Perrotta, A., Puntoni, R., and Parodi, S. 32P-postlabeling detection of aromatic adducts in the white blood cell DNA of nonsmoking police officers. Cancer Epidemiol. Biomarkers Prey., 7: 3–11, 1998.Google Scholar
  61. 61.
    Van Schooten, FJ., Godschalk, R.W.L., Breedijk, A., Maas, L.M., Kriek, E., Sakai, H., Wigbout, G., Baas, R, Van’tVeer, L., and van Zandwijk, N. 32P-postlabelling of aromatic DNA adducts in white blood cells and alveolar macrophages of smokers: saturation at high exposures. Mutat. Res., 378: 65–75, 1997.Google Scholar
  62. 62.
    Hemminki, K., Dickey, C., Karlsson, S., Bell, D., Hsu, Y., Tsai, W.-Y., Mooney, L.A., Savela, K., and Perera, F.P. Aromatic DNA adducts in foundry workers in relation to exposure, life style and CYP1A1 and glutathione transferase M1 genotype. Carcinogenesis, 18: 345–350, 1997.PubMedCrossRefGoogle Scholar
  63. 63.
    Mooney, L.A., Bell, D.A., Santella, R.M., Van Bennekum, A.M., Ottman, R., Paik, M., Blaner, W.S., Lucier, G.W., Covey, L., Young, T.-L., Cooper, T.B., and Glassman, A.H. Contribution of genetic and nutritional factors to DNA damage in heavy smokers. Carcinogenesis, 18: 503–509, 1997.PubMedCrossRefGoogle Scholar
  64. 64.
    Rojas, M., Alexandrov, K., Cascorbi, I., Brockmöller, J., Likhachev, A., Pozharisski, K., Bouvier, G., Auburtin, G., Mayer, L., Kopp-Schneider, A., Roots, I., and Bartsch, H. High benzo[a]pyrene diolepoxide DNA adduct levels in lung and blood cells from individuals with combined CYP1A1 MspI/MspI-GSTM1 *0/*0 genotypes. Pharmacogenetics, 8: 109–118, 1998.PubMedCrossRefGoogle Scholar
  65. 65.
    Martone, T., Airoldi, L., Magagnotti, C., Coda, R., Randone, D., Malaveille, C., Avanzi, G., Merletti, E, Hautefeuille, A., and Vineis, P. 4-Aminobiphenyl-DNA adducts and p53 mutations in bladder cancer. Int. J. Cancer, 75: 512–516, 1998.PubMedCrossRefGoogle Scholar
  66. 66.
    Culp, S.J., Roberts, D.W., Talaska, G., Lang, N.P., Fu, P.P., Lay, J.O.Jr., Teitel, C.H., Snawder, J.E., Von Tungeln, L.S., and Kadlubar, F.F. Immunochemical, 32P-postlabeling, and GC/MS detection of 4aminobiphenyl-DNA adducts in human peripheral lung in relation to metabolic activation pathways involving pulmonary N-oxidation, conjugation, and peroxidation. Mutat. Res., 378: 97–112, 1997.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Luisa Airoldi
    • 1
  • Roberta Pastorelli
    • 1
  • Cinzia Magagnotti
    • 1
  • Roberto Fanelli
    • 1
  1. 1.Department of Environmental Health SciencesIstituto di Ricerche Farmacologiche Mario NegriMilanItaly

Personalised recommendations