Phytochemicals as Modulators of Cancer Risk

  • H. Leon Bradlow
  • Nitin T. Telang
  • Daniel W. Sepkovic
  • Michael P. Osborne
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 472)


The role of diet as a modulator of cancer initiation and promotion has been suggested on epidemiological grounds showing changes in cancer incidence as people migrate from low cancer incidence (breast and prostate) countries to high incidence countries.1 By the third generation the descendants of these migrants have acculturated and now have the same cancer incidence as natives of the host country. Conversely immigrants from these same countries where stomach and esophageal cancer has a high incidence show a drop by the third generation when they move into a country with a low incidence of these cancers.2


Mammary Tumor Caffeic Acid Phenethyl Ester Epigallocatechin Gallate Estrogen Metabolism Perillyl Alcohol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Graham, S. (1983) Toward a dietary control of cancer. Epidemiol Rev 5: 38–50.PubMedGoogle Scholar
  2. 2.
    Wynder E.L., Fujita Y., and Harris R.E. (1991) Comparative epidemiology of cancer between the United States and Japan. A second look. Cancer 67: 746–763.Google Scholar
  3. 3.
    Telang N.T., Narayanen R., Bradlow H.L., and Osborne, M.P. (1991) Coordinated expression of intermediate biomarkers for tumorigenic transformation in ras transfected mouse mammary epithelial cells. Breast Cancer Res Treat 18: 155–163.PubMedCrossRefGoogle Scholar
  4. 4.
    Bradlow H.L., Hershcopf R.J., Martucci C.P., Fishman J., and Osborne M.P. (1985) Estradiol 16a-hydroxylation in the mouse correlates with mammary tumor virus incidence and the presence of murine mammary tumor virus: A possible model for the hormonal etiology of breast cancer in humans. Proc Natl Acad Sci USA 82: 6295–6299.Google Scholar
  5. 5.
    Telang N.T., Axelrod D., Bradlow H.L., and Osborne M.P. (1990) Metabolic biotransformation of estradiol in human mammary explant cultures. In: Biochemistry of Breast Cyst Fluid: Correlation with Breast Cancer Risk, eds. A. Angeli, H.L. Bradlow, EI. Chasalow, and L. Dogliotti, Ann NY Acad Sci 586: 70–78.Google Scholar
  6. 6.
    Auborn K.J., Woodworth C., DiPaolo J.A., and Bradlow H.L. (1991) The interaction between HPV Infection and estrogen metabolism in cervical carcinogenesis Int J Cancer 49: 867–869.Google Scholar
  7. 7.
    Raju U., Levitz M., Sepkovic D.W., Bradlow H.L., Dixon M., and Miller W.R. (1997) estradiol (E2) and estrone (El) metabolislm in human breast cysts J Soc Gyn Invest 85a:#T185.Google Scholar
  8. 8.
    Telang N.T., Bradlow H.L., Kurihara H., and Osborne M.P. (1989) In vitro biotransformation of estradiol by explant cultures of murine mammary tissues. Breast Cancer Res Treat 13: 173–181.PubMedCrossRefGoogle Scholar
  9. 9.
    Schneider J., Kinne D., Fracchia A., Pierce V., Anderson K.E., Bradlow H.L., and Fishman, J. (1982) Abnormal oxidative metabolism of estradiol in women with breast cancer. Proc Natl Acad Sci USA, 79: 3047–3050.PubMedCrossRefGoogle Scholar
  10. 10.
    Bradlow H.L., Sepkovic D.W., Klug T., and Osborne M.P. (1998) Application of an improved ELISA assay to the analysis of urinary estrogen metabolites Steroids 63: 406–413.Google Scholar
  11. 11.
    Telang N.T., Katdare M., Bradlow H.L., Osborne M.P., and Fishman J. (1997) Inhibition of proliferation and modulation of estradiol metabolism: Novel mechanisms for breast cancer prevention by the phytochemical indole-3-carbinol. Proc Soc Exp Biol Med 216: 246–251.PubMedGoogle Scholar
  12. 12.
    Telang N.T., Katdare M., Bradlow H.L., and Osborne M.P. (1999) Cell cycle regulation, apoptosis, and estradiol biotransformation: Novel endpoint biomarkers for human breast cancer prevention. J Clin Ligand Assay in press.Google Scholar
  13. 13.
    Bradlow H., Michnovicz J.J., Telang N.T., and Osborne M.P. (1991) Effect of dietary indole-3-carbinol on estradiol metabolism and spontaneous mammary tumors in mice. Carcinogenesis 12: 1571–1574.PubMedCrossRefGoogle Scholar
  14. 14.
    Malloy V.L., Bradlow H.L., and Orentreich N. (1998) Interaction between a semisynthetic diet and indole-3-carbinol on mammary tumor incidence in Balb/cfC3H Mice Anticancer Res 17: 4333–4338.Google Scholar
  15. 15.
    Grubbs C., Steele V.E., Casebolt T., et al. (1994) Chemoprevention of Chemically Induced Mammary Carcinogenesis by Indole-3-Carbinol AACR Meeting Abst #1305.Google Scholar
  16. 16.
    Tiwari R.K., Bradlow H.L.,Telang N.T., and Osborne M.P. (1994) Selective Responses of human breast cancer cells to indole-3-carbinol, a chemo-preventive agent. J Natl Cancer Inst 86: 126–131.PubMedCrossRefGoogle Scholar
  17. 17.
    Niwa T., Swaneck G., and Bradlow, H.L. (1994) Alterations in estradiol metabolism in MCF-7 cells induced by treatment with indole-3-carbinol and related com-pounds. Steroids 59: 523–527.PubMedCrossRefGoogle Scholar
  18. 18.
    Bradlow H.L., Telang N.T., Sepkovic D.W., and Osborne M.P. (1997) 2-Hydroxyestrone: The Ogoodô estrogen International Symposium on DHEA Transformation into Androgens and Estrogens in Target Tissues: Intracrinology, Quebec. J Endocrinol 150: S259 - S265.Google Scholar
  19. 19.
    Michnovicz J.J., and Bradlow H.L. (1990) Induction of estradiol metabolism by dietary indole-3carbinol in humans. J Natl Cancer Inst 50: 947–950.CrossRefGoogle Scholar
  20. 20.
    Bradlow, H.L., Michnovicz J.J., Wong G.Y.C., Halper M.P., Miller D., and Osborne M.P. (1994) Long term responses of women to indole-3-carbinol or a high fiber diet. Cancer Epidemiol Biomarkers Prevention 3: 591–595.Google Scholar
  21. 21.
    Kojima T., Tanaka T., and Mori M. (1994) Chemoprevention of spontaneous endo-metrial cancer in female Donryu rats by dietary indole-3-carbinol. Cancer Res. 54: 1446–1449.PubMedGoogle Scholar
  22. 22.
    Auborn K., Abramso A., Bradlow H.L., Sepkovic D.W., and Mulloolly V. (1999) Estrogen metabolism and laryngeal papillomatosis: A pilot study on dietary prevention Anticancer Resh. 18: 4569–4574.Google Scholar
  23. 23.
    Auborn K., Abramson A., Bradlow H.L., Sepkovitz D.W., and Mulloly V. (July 1995) Cruciferous vegetables as adjunct therapy for laryngeal papillomatosis, a pilot study Workshop on Respiratory Papillomatosis Quebec, Canada July.Google Scholar
  24. 24.
    Newfield K.M., Goldsmith A., Bradlow H.L., and Auborn K. (1993) Estrogen metabolism and human papillomavirus-induced tumors of the larynx: Chemo-Prophylaxis with indole-3-carbinol Anticancer Res 13: 337–342.Google Scholar
  25. 25.
    Rosen C.A., Thompson J.W., Woodson G.E., Hengesteg A.P., and Bradlow H.L. (1998) Preliminary results of the use of indole-3-carbinol for ecurrent respiratory papillomatosis. Otolaryngol Head Neck Surg 118: 810–815.PubMedCrossRefGoogle Scholar
  26. 26.
    Coll D.A., Rosen C.A., Auborn K., Potsic W.P., and Bradlow H.L. (1997) Treatment of recurrent respiratory papillomatosis with indole-3-carbinol Am J Otolaryngol 18: 283–285.Google Scholar
  27. 27.
    Xu M., Schut H.A., Bjeldanes L.F., Williams D E, Bailey G.S., and Dashwood R.H. (1997) Inhibition of 2-amino-3-methylimidazo[4,5-f]quinoline-DNA adducts by indole-3-carbinol: dose-response studies in the rat colon Carcinogenesis 18: 2149–2153.Google Scholar
  28. 28.
    Xu M., Bailey A.C., Hernandez J.F., Taoka C.R., Schut H.A., and Dashwood R.H. (1997) Protection by green tea, black tea, and indole-3-carbinol against 2-amino-3-methylimidazo[4,5-f] quinoline-induced DNA adducts and colonic aberrant crypts in the F344 rat. Carcinogenesis 17: 14291434.Google Scholar
  29. 29.
    Taioli E., Bradlow H.L., Sepkovic D.W., Garbers S., Trachman J., and Gartes S. (1996) Cyp-1A1 genotype, estradiol metabolism, and breast cancer in African-Americans AACR Spring # 1697 in Press in Cancer Prevention and Detection.Google Scholar
  30. 30.
    Taioli E., Bradlow H.L., Garbers S.V., Sepkovic D.W., Osborne M.P., Trachman J., Ganguly S., and Garte S.J. (1999) CyplAl genotype, estradiol, metabolism, and breast cancer in African-Americans Cancer Prevention and Detection in press.Google Scholar
  31. 31.
    Yuan E, Chen D., Liu K., Sepkovic D.W., Bradlow H.l., and Auborn K. (1999) Anti-estrogenic effect of indole-3-carbinol in cervical cancer cells: Implications for estrogen-related carcinogenesis Submitted.Google Scholar
  32. 32.
    De Cree C., Ball E, Seidlïtz B., Van Kranenburg G., Geurten E, and Keizer H.A. (1998) Responsiveness of plasma 2- and 4-hydroxycatecholestrogens to training and to graduate submaximal and maximal exercise in an untrained woman. Interuni-versity project on reproductive endocrinology in women and exercise Int J Sports Med 19: 20–25.Google Scholar
  33. 33.
    Snow R., Barbieri R., and Frisch R. (1991) Estrogen 2-hydroxylase oxidation and menstrual function among elite oarswomen J Clin Endocrinol Metab. 69: 369–376.Google Scholar
  34. 34.
    Manson M.M., Hudson E.A., Ball H.W.L., Barrett M.C., Clark H.L., Judah D.J., Verschoyle R.D., and Neal G.E. (1998) Chemoprevention of afilatoxin B1-induced carcinogenesis by indole-3-carbinol in rat liver-predicting the outcome using early biomarkers Carcinogenesis in press.Google Scholar
  35. 35.
    Dashwood R.H. (1998) Indole-3-carbinol: anticarcinogen or tumor promoter in brassica vegetables? Chem Biol Interact 110: 1–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Oganesian A., Hendricks J.D., and Williams D.E. (1997) Long term dietary indole-3-carbinol inhibits diethylnitrosamine-initiated hepatocarcinogenesis in the infant mouse model. Cancer Lett 116: 87–94.CrossRefGoogle Scholar
  37. 37.
    Zhang Y. and Talalay P. (1994) Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms Cancer Res 54: 1976s - 1981s.Google Scholar
  38. 38.
    Zhang Y., Kensler TW., Cho C-G., Posner G.H., and Talalay P. (1994) Anticarcinogenic activities of sulforaphene and structurally related synthetic norbornyl isothiocyanates Proc Natl Acad Sci USA 91: 3147–3150.Google Scholar
  39. 39.
    Faukner K., Mithen R., and Williamson G. (1998) Selective increase of the potential anticarcinogen 4-methylsulphinylbutyl glucosinolate in broccoli. Carcinogenesis 19: 605–609.CrossRefGoogle Scholar
  40. 40.
    Posner G.H., Cho C.G., Green J.V., Zhang Y., and Talalay P. (1994) Design and synthesis of bifunctional isothiocyanate analogs of sulforaphene: correlation between structure and potency as inducers of anticarcinogenic detoxification enzymes. J Med Chem 37: 170–176.PubMedCrossRefGoogle Scholar
  41. 41.
    Pereira M.A., Grubbs C.J., Barnes L.H., Li H., Olson G.R., Eto I., Juliana M., Whitaker L.M., Kelloff G.J., Steele V.A., and Lubet R.A. (1996) Effects of the phytochemicals, curcumin and quercitin, upon azoxymethane-induced colon cancer and 7,12-dimethylbenz[a]anthracene-induced mammary cancer in rats. Carcinogenesis 17: 305–311.Google Scholar
  42. 42.
    Shapiro T.A., Fahey J.W., Wase K.L., Stephenson K.K., and Talalay P. (1998) Human metabolism and excretion of cancer chemopreventive glucosinolates and isothiocyanates of cruciferous vegetables Cancer Epi Biomarkers and Preven 7: 1091–1100.Google Scholar
  43. 43.
    Katiyar S.K., Mohan R.R., Agarwal R., and Mukhtar H. (1997) Protection against induction of mouse skin papillomas with low and high risk of conversion to malignancy by green tea polyphenols. Carcinogenesis 18: 497–502.PubMedCrossRefGoogle Scholar
  44. 44.
    Shi S.T., Wang Z.Y., Smith T.J., Hong J.Y., Chen W.F., Ho C.T., and Yang C.S. (1994) Effects of green tea and black tea on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone bioactivation, DNA methylation, and lung tumorigenesis in A/J mice. Cancer Res 54: 4641–4647.Google Scholar
  45. 45.
    Yamane T., Knakatani H., Kikuoka N., Matsumoto H., Iwata Y., Kitao Y., Oya K., and Takahashi T. (1996) Inhibitory effects and toxicity of green tea polyphenols for gastrointestinal carcinogenesis. Cancer 77: 1662–1667.PubMedGoogle Scholar
  46. 46.
    Yamane T., Hagiwara N., Taleishi M., Akachi S., Kim M., Okuzumi J., Kitao Y., Inagake M., Kuwata K., and Takahasi T. (1991) Inhibition of azoxymethane-induced colon carcinogenesis in rat by green tea polyphenol fraction. Jpn J Cancer Res 82: 1336–1339.PubMedCrossRefGoogle Scholar
  47. 47.
    Hirose M., Mizoguchi Y., Yaono M., Tanak H., Yamaguchi T., and Shirai I. (1997) Effects of green tea catechins on the progression or late promotion stage of mammary gland carcinogenesis in female Sprague-Dawley rats pre-treated with 7,12-dimethylbenz(a)anthracene Cancer Lett 112: 14 1147.Google Scholar
  48. 48.
    Kujiki H., Yoshizawa S., Horiuchi T., Suganuma M., Yatsunami J., Nishiwaki S., Okabe S., NishiwakiMatsushima R., Okuda T., and Sugimura T. (1992) Anticarcinogenic effects of epigallocatechin gallate. Prey Med 21: 503–509.CrossRefGoogle Scholar
  49. 49.
    Michnovicz J.J. and Bradlow H.L. (1994) Dietary cytochrome P450 modifiers in the control of estrogen metabolism. In: Food Phytochemicals for Cancer Prevention I. eds. M.T. Huang, T. Osawa, C.T. Ho and R.T. Rosen, Published by the American Chemical Society, Washington, DC pp. 282–293.Google Scholar
  50. 50.
    Ariazi E.A., and Gould M.N. (1996) Identifying differential gene expression in monoterpene-treated mammary carcinomas using subtractive display. J Biol Chem 271: 29286–29294.PubMedCrossRefGoogle Scholar
  51. 51.
    Karlson J., Borg-Karlson A.K., Unelius R., Shoshan M.C., Wilking N., Ringborg U., and Linder S. (1996) Inhibition of tumor cell growth by monoterpenes in vitro: evidence of a Ras-independent mechanism of action. Anticancer Drugs 7: 422–429.PubMedCrossRefGoogle Scholar
  52. 52.
    Crowell P.L., Siar A.A., and Burke Y.D. (1995) Antitumorigenic effects of limonene and perillyl alcohol against pancreatic and breast cancer. Adv Exp Med Biol 401: 131–136.CrossRefGoogle Scholar
  53. 52.
    Broitman S.A., Wilkinson J. 4th, Cerda S., and Branch S.K. (1996) Effects of monoterpenes and mevinolin on murine colon tumor CT-26 in vitro and its hepatic ()metastases() in vivo. Adv Exp Med Biol 401: 111–130.PubMedCrossRefGoogle Scholar
  54. 53.
    Reddy B.S., Wang C.X., Samaha H., Lubet R., Steele V.E., Keloff G.J., and Rao C.V. (1997) Chemoprevention of colon carcinogenesis by dietary perillyl alcohol. Cancer Res 57: 420–425.PubMedGoogle Scholar
  55. 54.
    Haag J.D. and Gould M.N. (1994) Mammary carcinoma regression induced by perillyl alcohol, a hydroxylated analog of limonene Cancer Chemother Pharmacol 34: 477–483.Google Scholar
  56. 55.
    Gould M.N. G.C.J., Shang R., Wang B., Kennan W.S., and Haag J.D. (1994) Limonene chemoprevention of mammary carcinoma induction following direct in situ transfer of v-Ha-ras. Cancer Res 54: 3540–3543.PubMedGoogle Scholar
  57. 56.
    Karlson J, Borg-Karlson AK, Unelius R, Shoshan MC, Wilking N, Ringborg U, Linder S. (1996) Inhibition of tumor cell growth by monoterpenes in vitro: evidence of a Ras-independent mechanism of action. Anticancer Drugs 7: 422–429.PubMedCrossRefGoogle Scholar
  58. 57.
    Ariazi E.A. and Gould M.N. (1996) identifying differential gene expression in monoterpene-treated mammary carcinoma using subtractive display J. Biol Chem 271:29286–29294.Google Scholar
  59. 58.
    Whysner J. and Williams G.M. (1996) D-limonene mechanistic data and risk assessment: absolute species-specific cytotoxicity, enhanced cell proliferation, and tumor promotion. Pharmacol Ther 71: 127–136.PubMedCrossRefGoogle Scholar
  60. 59.
    Conney A.H., Lou Y.R., Xie J.G., Osawa T., Newmark H.L., Liu Y., Chang R.L., and Huang M.T. (1997) Some perspectives on dietary inhibition of carcinogenesis: Studies with curcumin and tea. Proc Soc Exptl Biol Med 216: 234–245.Google Scholar
  61. 60.
    Mehta K., Pantazis P., McQueen T., and Aggaral B.B. (1997) Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs 8: 470–481.PubMedCrossRefGoogle Scholar
  62. 61.
    Rao C.V., Rivenson A., Simi B., and Reddy B.S. (1995) Chemoprevention of colon cancer by dietary curcumin Ann NY Acad Sci 768: 201–204.Google Scholar
  63. 62.
    Kawamori T., Lubet R., Steele V.E., Kelloff G.J., Kaskey R.B., Rao C.V., and Reddy B.S. (1999) Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res 59: 597–601.PubMedGoogle Scholar
  64. 63.
    Huang M.T., Ma W., Yen P., Xie J.G., Han J., Frenkel K., Grunberger D., and Conney A.H. (1997) Inhibitory effects of topical application of low doses of curcumin on 12-O-tetradecanoylphorbol-13acetate-induced tumors promotion and oxidized DNA bases in mouse epidermis. Carcinogenesis 18: 83–88.PubMedCrossRefGoogle Scholar
  65. 64.
    Menon L.G., Kuttan R., and Kuttan G. (1995) Inhibition of lung metastasis in mice induced by B16F10 melanoma cells by polyphenolic compounds. Cancer Lett 95: 221–225.PubMedCrossRefGoogle Scholar
  66. 65.
    Singh Hvh S.V., Hu X., Srivastava S.K., Singh M., Xia H., Orchard J.L., and Zaren H.A. (1998) Mechanism of inhibition of benzo[a]pyrene-induced forestomach cancer in mice by dietary curcumin. Carcinogenesis 19: 1357–1360.PubMedCrossRefGoogle Scholar
  67. 66.
    Sreejayan N., and Rao M.N. (1996) Free radical scavenging activity of curcuminoids, Arzneimittelforschung 46: 169–171.PubMedGoogle Scholar
  68. 67.
    Richard S.E., Orcheson L.J., Seidl M.M., Luyengi L., Fong H.H., and Thompson L.L. (1996) Dose-dependent production of mammalian lignans in rats and in vitro from the purified precursor secoisolariciresinol diglycoside in flaxseed. J Nutr 126: 2012–2019.Google Scholar
  69. 68.
    Zheng, W., Dai Q., Custer L.J., Shu X-O., Wen W-Q., Jin E, and Franke A.A. (1999) Urinary excretion of isoflavonoids and the risk of breast cancer. Cancer Epidem Biomarkers Preven 8: 3640.Google Scholar
  70. 69.
    Morton M.S., Matos-Ferreira A., Abranches-Monteiro L., Correia R., Blacklock N., Vhan P.S., Cheng C., Lloyd S., Chieh-ping W., and Griffith K. (1997) Measurement and metaboism of isoflavonoids and lignans in the human male. Cancer Lett. 19: 145–151.CrossRefGoogle Scholar
  71. 70.
    Joannou G.E., Kelly G.E., Reeder A.Y., Waring M., and Nelson C.A. (1995) urinary profile study of dietary phytoestrogens. The identification and mode of metabolism of new isoflavonoids J Steroid Biochem Mol Biol 54: 167–184.Google Scholar
  72. 71.
    Kurzer M.S., Lampe J.W., Martini M.C., and Adlercreutz H. (1995) Fecal lignan and isoflavonoid excretion in premenopausal women consuming flaxseed powder. Cancer Epidemiol Biomarkers Prey 4: 353–358.Google Scholar
  73. 72.
    Adlercreutz H., Fotsis T., Kurzer M.S., Wahala K., Makela T., and Hase T. (1995) Isotope dilution gas chromatographic-mass spectrometric method for the determination of unconjugated lignans and isoflavonoids in hman feces, with preliminary results in omnivorous and vegetarian women. Anal Biochem 225: 101–108.PubMedCrossRefGoogle Scholar
  74. 73.
    Bambagiotti-Alberti M., Cooron S.A., Ghiara C., Moreti G., and Raffaelli A. (1994) Investigation of mammalian lignan precursors in flax seed: first evidence of secoisolariciresinol diglucoside in two isomeric forms by liquid chromato-graphic/mass spectrometry. Rapid Commun. Mass Spectrom 6: 929–932.Google Scholar
  75. 74.
    Adlercreutz H., van der Wildt J., Kinzel J., Attalla H., Wahala K., Makela T., Hase T., and Fotsis T. (1995) Lignan and isoflavanoid conjugates in human urine. J Steroid Biochem Mol Biol 52: 97–103.PubMedCrossRefGoogle Scholar
  76. 75.
    Wang C., Makela T., Hase T., Adlercreutz H., and Kurzer M.S. (1994) Lignans and flavanoids inhibit aromatase enzyme in human preadipocytes J Steroid Biochem Mol Biol 50: 205–212.Google Scholar
  77. 76.
    Martin M.E., Haourigui M., Pelissero C., Benassayag C., and Nunez E.A. (1996) Interactions between phytoestrogens and human sex steroid binding protein. Life Sci 58: 429–436.PubMedCrossRefGoogle Scholar
  78. 77.
    Fortunati N., Fissore E, Comba A., Becchis M., Catalano M.G., Fazzari A., Berta L., and Frairia R. (1996) Sex steroid-binding protein and its membrane receptor in estrogen-dependent breast cancer: biological and pathophysiological impact. Horm Res 45: 202–206.PubMedCrossRefGoogle Scholar
  79. 78.
    Morton M.S., Wilcox G., Wahlqvist M.L., and Griffiths K. (1994) Determination of lignans and isoflavanoids in human female plasma following dietary supplementation. J Endocrinol 142: 251–9.PubMedCrossRefGoogle Scholar
  80. 79.
    Lampe J.W., Martini M.C., Kurzer M.S., Adlercreutz H., and Slavin J.L. (1994) Urinary lignan and isoflavanoid excretion in premenopausal women consuming flaxseed powder. Am J Clin Nutr 60: 122–128.PubMedGoogle Scholar
  81. 80.
    Bracke M.E., Depypere H.T., Boterberg T., Van Marck V.L., Vennekens K.M., Vanluchene E., Nuytunck M., Serreyn R., and Marcek M.M. (1999) Influence of tangeretin on tamoxifenOs therapeutic benefit in mammary cancer J Natl Cancer Inst 91: 354–359.Google Scholar
  82. 81.
    Carothers A.M., Barrett C.C., Mahmoud J.C., Bolinski R.T., Churchill M.R.,Isaacs J., Grunberger D.,and Bertagnolli M.M. (1999) Caffeic acid phenethyl ester (CAPE) prevents tumors in Min/+ mice and regulation of P53 function in vitro, in Cancer Prevention: Novel ed by H Leon Bradlow, Jack Fishman, and Michael P. Osborne Ann NY Acad Sci in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • H. Leon Bradlow
    • 1
  • Nitin T. Telang
    • 1
  • Daniel W. Sepkovic
    • 1
  • Michael P. Osborne
    • 1
  1. 1.Strang Cancer Research LaboratoryNew YorkUSA

Personalised recommendations