Skip to main content

Protective Effects of Butyric Acid in Colon Cancer

  • Chapter

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 472)

Abstract

A great deal of evidence indicates that cancer is the result of a reciprocal interaction between genetic susceptibility and environmental factors. Apparently, only 5% of all cancers is linked to genetic, inheritable alterations, while the remainder is associated with environmental conditions that act in concert with individual susceptibility.1 In this context, dietary habit covers a fundamental role. Following the recent publication from the American Institute for Cancer Research2 (AICR), a “correct” diet could decrease the cancer rate by as much as 20%. For some specific cancers, the effect is even more dramatic: from 33 to 50% of breast cancer can be prevented through diet, and as much as 33% of lung cancer and 75% of colorectal cancers are prevented by correct diet choices. Colorectal cancer represents one of the well studied cancers at the molecular level: here, the steps of tumor progression show in vivo an accumulation of morphological changes that result in vivo in mutations in specific genes. Loss of function of the APC tumor suppressor gene causes hyperproliferation of normal epithelium and early adenoma; the subsequent activation of k-ras oncogene and inactivation of DCC and p53 tumor suppressor genes are associated with late adenoma and carcinoma.3,4 Colorectal cancers are very common causing over 50,000 deaths per year in the United States, 11% of total deaths from cancer. They result from the combined effect of inherited factors and stochastic genetic mutations, partially related to environmental conditions such as diet composition.5 Considerable epidemiological data support the hypothesis that a diet rich in fiber is associated with a decreased risk of intestinal cancers.6,7 Although this views appears simplistic and remains controversial for many aspects, it is currently generally accepted. In fact, one of the fifteen recommendations of the AICR advises to “eat a variety of vegetables and fruits all year round”.2 Several mechanisms have been considered in order to explain the protective effect of dietary fiber (DF). They include dilution of luminal carcinogen concentration, fiber-associated changes in colonic transit that decrease colonic enterocyte exposure to luminal carcinogens, interactions with intestinal contents, production of tissue factors by stimulation of colonic mucosa, role of bile acids and direct antineoplastic activity by DF components.8–13 A different mechanism by which fiber may modulate carcinogenesis is related to the production of butyric acid (BA), a component of the short-chain fatty acids (SFCA) obtained by degradation of poorly fermented fiber by colonic microflora. This review will focus on the molecular aspects that affect the activity of BA on in vivo and in vivo models.

Keywords

  • Colon Cancer
  • Ulcerative Colitis
  • Butyric Acid
  • Colonic Mucosa
  • Short Chain Fatty Acid

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4757-3230-6_12
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-4757-3230-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perera, F.P. 1996. Molecular epidemiology: insights into cancer susceptibility, risk assssment, and prevention. J. Natl. Cancer Institute. 88: 496–509.

    CAS  CrossRef  Google Scholar 

  2. American Institute for Cancer Research. 1997. Food, nutrition, and the prevention of cancer: a global perspective.

    Google Scholar 

  3. Aaltonen, L.A., P. Peltomaki, F.S. Leach, P. Sistonen, L. Pylkkanen, J.P. Mecklin, H. Jarvinen, S.M. Powell, J. Jen, S.R. Hamilton, et al. 1993. Clues to the pathogenesis of familial colorectal cancer. Science. 260: 812–816.

    PubMed  CAS  CrossRef  Google Scholar 

  4. Fearon, E.R. and B. Vogelstein. 1990. A genetic model for colorectal tumorigenesis. Cell. 61: 759–767.

    PubMed  CAS  CrossRef  Google Scholar 

  5. Rustgi, A.K. and D.K. Podolsky. 1992. The molecular basis of colon cancer. Ann. Rev. Med. 43: 61–68.

    PubMed  CAS  CrossRef  Google Scholar 

  6. Burkitt, D.P. 1971. Epidemiology of cancer of the colon and rectum. Cancer. 28: 3–13.

    PubMed  CAS  CrossRef  Google Scholar 

  7. Burkitt, D.P. 1971. Some neglected leads to cancer causation. J. Natl. Cancer Inst. 47: 913–919.

    PubMed  CAS  Google Scholar 

  8. Hill, M.J. 1998. Mechanisms proposed for the protective action of fiber against colorectal cancer. Gastroenterology Int. 11 (suppl. 1): 58–61.

    Google Scholar 

  9. Smith, J.G., W.H. Yokoyama, and B. German. 1998. Butyric acid from the diet: actions at the level of gene expression. Critical Rev. Food Sci. 38: 259–297.

    Google Scholar 

  10. Bugaut, M. and M. Bentéjac. 1993. Biological effects of short-chain fatty acids in nonruminant mammals. Annu. Rev. Nutr. 13: 217–241.

    Google Scholar 

  11. Hassing, C.A., J.K. Tong, and S.L. Schreiber. 1997. Fiber-derived butyrate and the prevention of colon cancer. Chem. Biol. 4: 783–789.

    Google Scholar 

  12. Klurfeld, D.M. 1992. Dietary fiber-mediated mechanisms in carcinogenesis. Cancer Res. (suppl.). 52: 2055s - 2059s.

    CAS  Google Scholar 

  13. Eastwood, M.A. 1992. The physiological effect of dietary fiber: an update. Ann. Rev. Nutr. 12: 19–35.

    CAS  CrossRef  Google Scholar 

  14. Buckley, A.R., M.A. Leff, D.J. Buckley, N.S. Magnuson, G. de Jong, and P.W. Gout. 1996. Alteration in pim-1 and c-myc expression associated with sodium butyrate-induced growth factor dependency in autonomous rat Nb2 lymphoma cells. Cell Growth Differ. 7: 1713–1721.

    PubMed  CAS  Google Scholar 

  15. Gurr, M.I. and N.-G. Asp. 1994. Dietary Fibre. ILSI Press, Brussels.

    Google Scholar 

  16. Hill, M.J. and E Fernandez. 1990. Bacterial metabolism, fiber, and colorectal cancer, pp. 417–429. In D. Kritchevsky, C. Bonfield, and J.W. Anderson (ed.), Dietary Fiber. Plenum, New York.

    Google Scholar 

  17. Giacosa, A. 1998. RPC consensus cereals, fiber, and colorectal cancer. Gastroenterology Int. 11 (suppl. 1): 66–68.

    Google Scholar 

  18. Slattery, M.L., J.D. Potter, A. Coates, et al. 1997. Plant foods and colorectal cancer: an assessment of specific foods and their related nutrients ( United States ). Cancer Causes Control. 8: 575–590.

    Google Scholar 

  19. Howe, G.R., E. Benito, R. Castelleto, J. Cornee, J. Esteve, R.E Gallagher, J.M. Iscovich, J. Deng-ao, R. Kaaks, G.A. Kune, et al. 1992. Dietary intake of fiber and decreased risk of cancers of the colon and rectum: evidence from the combined analysis of 13 case-control studies. J. Natl. Cancer Inst. 84: 1887–1896.

    Google Scholar 

  20. Willet, W.C., M.J. Stampfer, G.A. Colditz, et al. 1990. Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective study among women. N. Engl. J. Med. 323: 1664–1672.

    Google Scholar 

  21. Giovannucci, E., E.B. Rimm, M.J. Stampfer, et al. 1994. Intake of fat, meat, and fiber in relation to risk of colon cancer in men. Cancer Res. 54: 2390–2397.

    PubMed  CAS  Google Scholar 

  22. Steinmetz, K.A., L.H. Kushi, R.M. Bostick, et al. 1994. Vegetables, fruit, and colon cancer in the Iowa women’s health study. Am. J. Epidemiol. 139: 1–15.

    Google Scholar 

  23. Fuchs, C.S., E.L. Giovannucci, G.A. Colditz, D.J. Hunter, M.J. Stampfer, B. Rosner, F.E. Speizer, and W.C. Willett. 1999. Dietary fiber and the risk of colorectal cancer and adenoma in women. N. Engl. J. Med. 340: 169–176.

    Google Scholar 

  24. Negri, E. and C. La Vecchia. 1998. Dietary fiber and colorectal cancer prevention. Gastroenterology Int. 11 (suppl. 1): 56–57.

    Google Scholar 

  25. Negri, E., S. Franceschi, M. Parpinel, and C. La Vecchia. 1998. Fiber intake and risk of colorectal cancer. Cancer Epidemiol. Biomarkers Prey. 7: 667–671.

    Google Scholar 

  26. Levi, F., C. La Vecchia, E. Lucchini, and E. Negri. 1995. Cancer mortality in Europe, 1990–92. Eur. J. Cancer Prey. 4: 389–417.

    Google Scholar 

  27. Miller, T.L. and M.J. Wolin. 1979. Fermentations by saccharolytic intestinal bacteria. Am. J. Clin. Nutr. 32: 164–172.

    Google Scholar 

  28. Rombeau, J.L., S.A. Kripke, and R.G. Settle. 1990. Short chain fatty acids. Production, absorption, metabolism, and intestinal effects, pp. 317–323. In D. Kritchevsky, C. Bonfield, and J.W. Anderson (ed.), Dietary Fiber. Plenum Press, New York.

    CrossRef  Google Scholar 

  29. Cummings, J.H., E.W. Pomare, W.J. Branch, C.P.E. Naylor, and G.T. Macfarlane. 1987. Short chain fatty acids in human large intestine, portal, hepatic, and venous blood. Gut. 28: 1221–1227.

    PubMed  CAS  CrossRef  Google Scholar 

  30. Latella, G. 1998. Effects of SCFA on human colonocytes. Gastroenterology Int. 11 (suppl. 1): 76–79.

    Google Scholar 

  31. Bugaut, M. 1987. Occurrence, absorption and metabolism of short chain fatti acids in the digestive tract of mammals. Comp. Biochem. Physiol. B. 86: 439–472.

    CAS  CrossRef  Google Scholar 

  32. Rechkemmer, G., K. Ronnau, and W. von Engelhardt. 1988. Fermentation of polysaccharides and absorption of short chain fatty acids in the mammalian hindgut. Comp. Biochem. Physiol. A. 90: 563–568.

    Google Scholar 

  33. Titus, E. and G.A. Ahearn. 1992. Vertebrate gastrointestinal fermentation: transport mechanisms for volatile fatty acids. Am. J. Physiol. 262: R547–553.

    PubMed  CAS  Google Scholar 

  34. Charney, A.N., L. Micic, and R. Egnor. 1998. Nonionic diffusion of short-chain fatty acids across rat colon. Am. J. Physiol. 274: G518 - G524.

    PubMed  CAS  Google Scholar 

  35. Maczulak, A.E., M.J. Wolin, and T.L. Miller. 1993. Amounts of viable anaerobes, methanogens, and bacterial fermentation products in feces of rats fed high-fiber or fiber-free diets. Appl. Environ. Microbiol. 59: 657–662.

    Google Scholar 

  36. Knudsen, K.R., B.B. Jensen, and I. Hansen. 1993. Oat bran but not a beta-glucan-enriched oat fraction enhances butyrate production in the large intestine of pigs. J. Nutr. 123: 1235–1247.

    PubMed  CAS  Google Scholar 

  37. Lupton, J.R. and P.P. Kurtz. 1993. Relationship of colonic luminal short-chain fatty acids and pH to in vivo cell proliferation in rats. J. Nutr. 123: 1522–1530.

    PubMed  CAS  Google Scholar 

  38. Boffa, L.C., J.R. Lupton, M.R. Mariani, M. Ceppi, H.L. Newmark, A. Scalmati, and M. Lipkin. 1992. Modulation of colonic epithelial cell proliferation, histone acetylation, and luminal short chain fatty acids by variation of dietary fiber (wheat bran) in rats. Cancer Res. 52: 5906–5912.

    PubMed  CAS  Google Scholar 

  39. Nordgaard, I., H. Hove, M.R. Clausen, and P.B. Mortensen. 1996. Colonic production of butyrate in patients with previous colonic cancer during long-term treatment with dietary fibre (Plantago ovata seeds). Scand. J. Gastroenterol. 31: 1011–1020.

    Google Scholar 

  40. McIntyre, A., G.P. Young, T. Taranto, P.R. Gibson, and P.B. Ward. 1991. Different fibers have different regional effects on luminal contents of rat colon. Gastroenterology. 101: 1274–1281.

    PubMed  CAS  Google Scholar 

  41. Jacobs, L.R. 1986. Modification of experimental colon carcinogenesis by dietary fiber. Adv. Exp. Med. Biol. 206: 105–118.

    PubMed  CAS  Google Scholar 

  42. Jacobs, L.R. 1986. Relationship between dietary fiber and cancer: metabolic, physiologic, and cellular mechanisms. Proc. Soc. Exp. Biol. Med. 183: 299–310.

    PubMed  CAS  Google Scholar 

  43. Jacobs, L.R. and J.R. Lupton. 1986. Relationship between colonic luminal pH, cell proliferation, and colon carcinogenesis in 1,2-dimethylhydrazine treated rats fed high fiber diets. Cancer Res. 46: 1727–1734.

    PubMed  CAS  Google Scholar 

  44. Young, G.P., A. McIntyre, T. Taranto, P. Ward, and P.R. Gibson. 1991. Butyrate production from dietary fiber protects against large bowel cancer in a rat model. Gastroenterology. 100: A411.

    Google Scholar 

  45. Weaver, G.A., J.A. Krause, T.L. Miller, and M.J. Wolin. 1988. Short chain fatty acid distributions of enema samples from a sigmoidoscopy population: an association of high acetate and low butyrate ratios with adenomatous polyps and colon cancer. Gut. 29: 1539–1543.

    PubMed  CAS  CrossRef  Google Scholar 

  46. Clausen, M.R., H. Bonnen, and P.B. Mortensen. 1991. Colonic fermentation of dietary fibre to short chain fatty acids in patients with adenomatous polyps and colonic cancer. Gut. 32: 923–928.

    PubMed  CAS  CrossRef  Google Scholar 

  47. McIntyre, A., P.R. Gibson, and G.P. Young. 1993. Butyrate production from dietary fibre and protection against large bowel cancer in rat model. Gut. 34: 386–391.

    PubMed  CAS  CrossRef  Google Scholar 

  48. D’Argenio, G., V. Cosenza, M. Delle Cave, P. Iovino, N. Della Valle, G. Lombardi, and G. Mazzacca. 1996. Butyrate enemas in experimental colitis and protection against bowel cancer in rat model. Gastroenterology. 110: 1727–1734.

    PubMed  CrossRef  Google Scholar 

  49. Medina, V., J.J. Afonso, H. Alvarez-Arguelles, C. Hernandez, and E. Gonzales. 1998. Sodium butyrate inhibits carcinoma development in a 1,2-dimethylhydrazine-induced rat colon cancer. J. Parenter Enteral. Nutr. 22: 14–17.

    Google Scholar 

  50. Caderni, G., C. Luceri, L. Lancioni, L. Tessitore, and P. Dolora. 1998. Slow-release pellets of sodium butyrate increase apoptosis in the colon of rats treated with azoxymethane, without affecting aberrant crypt foci and colonic proliferation. Nutrition and Cancer. 30: 175–181.

    PubMed  CAS  CrossRef  Google Scholar 

  51. Scheppach, W., H. Sommer, T. Kirchner, G.M. Paganelli, P. Bartram, S. Christi, E Richter, G. Dusel, and H. Kasper. 1992. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology. 103: 51–56.

    PubMed  CAS  Google Scholar 

  52. Bradburn, D.M., J.C. Mathers, A. Gunn, J. Burn, P.D. Chapman, and I.D.A. Johnston. 1993. Colonic fermentation of complex carbohydrates in patients with familial adenomatous polyposis. Gut. 34: 630–636.

    PubMed  CAS  CrossRef  Google Scholar 

  53. Chapman, M.A.S., M.F. Grahn, M.A. Boyle, M. Hutton, J. Rogers, and N.S. Williams. 1994. Butyrate oxidation is impaired in colonic mucosa of suffers of quiescent ulcerative colitis. Gut. 35: 73–76.

    PubMed  CAS  CrossRef  Google Scholar 

  54. Scheppach, W, S.U. Christi, H.P. Bartram, E. Richter, and H. Kasper. 1997. Effects of short-chain fatty acids on the inflamed colonic mucosa. Scand. J. Gastroenterol. (suppl.). 222: 53–57.

    Google Scholar 

  55. Scheppach, W., J.G. Muller, E. Boxberger, G. Dusel, E. Richter, H.P. Bartram, S.U. Christl, C.E. Dempfle, and H. Kasper. 1997. Histological changes in the colonic mucosa following irrigation with short-chain fatty acids. Eur. J. Gastroenterol. Hepatol. 9: 163–168.

    Google Scholar 

  56. Mitsuyama, K., T. Saiki, O. Kanauchi, T. Iwanaga, N. Tomiyasu, T. Nishiyama, H. Tateishi, A. Shirachi, M. Ide, A. Suzyki, et al. 1998. Treatment of ulcerative colitis with germinated barley foodstuff feeding: a pilot study. Aliment. Pharmacol. Ther. 12: 1225–1230.

    Google Scholar 

  57. Fernandez-Banares, E, J. Hinojosa, J.L. Sanchez-Lombrana, E. Navarro, J.F. Martinez-Salmeron, A. Garcia-Puges, E Gonzalez-Huix, J. Riena, V. Gonzales-Lara, F. Dominguez-Abascal, et al. 1999. Randomized clinical trial of Plantago ovata seeds (dietary fiber) as compared with mesalamine in mantaining remission in ulcerative colitis. Am. J. Gastroenterol. 94: 427–433.

    Google Scholar 

  58. Steinhart, A.H., T. Hiruki, A. Brzezinski, and J.P. Baker. 1996. Treatment of left-sided ulcerative colitis with butyrate enemas: a controlled trial. Aliment. Pharmacol. Ther. 10: 729–736.

    Google Scholar 

  59. Velazquez, O.C., H.M. Lederer, and J.L. Rombeau. 1993. Butyrate and the colonocyte. Implication for neoplasia. Dig. Dis. Sci. 41: 723–739.

    Google Scholar 

  60. Velazquez, O.C. and J.L. Rombeau. 1997. Butyrate. Potential role in colon cancer prevention and treatment. Adv. Exp. Med. Biol. 427: 169–181.

    Google Scholar 

  61. Velazquez, O.C., H.M. Lederer, and J.L. Rombeau. 1997. Butyrate and the colonocyte. Production, absorption, metabolism, and therapeutic implication. Adv. Exp. Med. Biol. 427: 123–134.

    Google Scholar 

  62. Barnard, J.A., J.A. Delzell, and N.M. Bulus. 1997. Short chain fatty acid regulation of intestinal gene expression. Adv. Exp. Med. Biol. 422: 137–144.

    Google Scholar 

  63. Hague, A., A.J. Butt, and C. Paraskeva. 1996. The role of butyrate in human colonic epithelial cells: an energy source or inducer of differentiation and apoptosis. Proc. Nutr. Soc. 55: 937–943.

    Google Scholar 

  64. Pouillart, PR 1998. Role of butyric acid and its derivatives in the treatment of colorectal cancer and hemoglobinopathies. Life Sci. 63: 1739–1760.

    PubMed  CAS  CrossRef  Google Scholar 

  65. Barnard, J.A. and G. Warwick. 1993. Butyrate rapidly induces growth inhibition and differentiation in HT-29 cells. Cell Growth Differ. 4: 495–501.

    PubMed  CAS  Google Scholar 

  66. Tanaka, Y., K.K. Bush, T.M. Klauck, and P.J. Higgins. 1989. Enhancement of butyrate-induced differentiation of HT-29 human colon carcinoma cells by 1,25-dihydroxyvitamin D3. Biochem. Pharmacol. 38: 3859–3865.

    Google Scholar 

  67. Hodin, R.A., S. Meng, S. Archer, and R. Tang. 1996. Cellular growth state differentially regulates enterocyte gene expression in butyrate-treated HT-29 cells. Cell Growth Differ. 7: 647–653.

    PubMed  CAS  Google Scholar 

  68. Garcia-Bermejo, L., N.E. Vilaboa, C. Perez, A. Galan, E. De Blas, and R Aller. 1997. Modulation of heat-shock protein 70 (HSP70) gene expression by sodium butyrate in U-937 promonocytic cells: relationship with differentiation and apoptosis. Exp. Cell Res. 236: 268–274.

    Google Scholar 

  69. Yamamoto, H., J. Fujimoto, E. Okamoto, J. Furuyama, T. Tamaoki, and T. Hashimoto-Tamaoki. 1998. Suppression of growth of hepatocellular carcinoma by sodium butyrate in vitro and in vivo. Int. J. Cancer. 76: 897–902.

    Google Scholar 

  70. Schroder, C., K. Eckert, and H.R. Maurer. 1998. Tributyrin induces growth inhibitory and differentiating effects on HT-29 colon cancer cells in vitro. Int. J. Oncol. 13: 1335–1340.

    Google Scholar 

  71. Herz, E, A. Schermer, M. Halwer, and L.H. Bogart. 1981. Alkaline phosphatase in HT-29, a human colon cancer cell line: influence of sodium butyrate and hyperosmolality. Arch. Biochem. Biophys. 210: 581–591.

    Google Scholar 

  72. Rabizadeh, E., M. Shaklai, A. Nudelman, L. Eisenbach, and A. Rephaeli. 1993. Rapid alteration of cmyc and c-jun expression in leukemic cells induced to differentiate by a butyric acid prodrug. FEBS Lett. 328: 225–229.

    PubMed  CAS  CrossRef  Google Scholar 

  73. Herutz, D.P., G.W. Zirnstein, J.F. Bradley, and P.G. Rothberg. 1993. Sodium butyrate causes an increase in the block to transcriptional elongation in the c-myc gene in SW837 rectal carcinoma cells. J. Biol. Chem. 268: 20466–20472.

    Google Scholar 

  74. Sauleimani, A. and C. Asselin. 1993. Regulation of c-myc expression by sodium butyrate in the colon carcinoma cell line Caco-2. FEBS Lett. 326: 45–50.

    CrossRef  Google Scholar 

  75. Sauleimani, A. and C. Asselin. 1993. Regulation of c-fos expression by sodium butyrate in the human colon carcinoma cell line Caco-2. Biochem. Biophys. Res. Commun. 193: 330–336.

    Google Scholar 

  76. Czerniak, B., E. Herz, R.P. Wersto, and L.G. Koss. 1987. Modification of Ha-ras oncogene p21 expression and cell cycle progression in the human colonic cancer cell line HT-29. Cancer Res. 47: 2826–2830.

    PubMed  CAS  Google Scholar 

  77. Li, S., S. Ke, and R.J. Budde. 1996. The C-terminal Src kinase (Csk) is widely expressed, active in HT-29 cells that contain activated Src, and its expression is downregulated in butyrate-treated SW620 cells. Cell Biol. Int. 20: 723–729.

    Google Scholar 

  78. Heerdt, B.G. and L.H. Augenlicht. 1991. Effect of fatty acids on expression of genes encoding subunits of cytochrome c oxidase and cytochrome c oxidase activity in HT29 human colonic adenocarcinoma cells. J. Biol. Chem. 266: 19120–19125.

    Google Scholar 

  79. Moore-Hoon, M.L. and R.J. Turner. 1998. Increased expression of the secretory Na+-K+-2C1cotrasporter with differentiation of a human intestinal cell line. Biochem. Biophys. Res. Commun. 244: 15–19.

    Google Scholar 

  80. Dangond, F. and S.R. Gullans. 1998. Differential expression of human histone deacetylase mRNAs in response to immune cell apoptosis induction by trichostatin A and butyrate. Biochem. Biophys. Res. Commun. 247: 833–837.

    Google Scholar 

  81. Cuisset, L., L. Tichonicky, and M. Delpech. 1998. A protein phosphatase is involved in the inhibition of histone deacetylation by sodium butyrate. Biochem. Biophys. Res. Commun. 29: 760–764.

    Google Scholar 

  82. Saunders, N., A. Dicker, C. Popa, S. Jones, and A. Dahler. 1999. Histone deacetylase inhibitors as potential antiskin cancer agent. Cancer Res. 59: 399–404.

    PubMed  CAS  Google Scholar 

  83. Bohm, L., F.A. Achneeweiss, R.N. Sharan, and L.E. Feinendegen. 1997. Influenze of histone acetylation on the modification of cytoplasmic and nuclear proteins by ADP-ribosylation in response to free radicals. Biochim. Biophys. Acta. 1334: 149–154.

    Google Scholar 

  84. Toscani, A., D.R. Soprano, and K.J. Soprano. 1988. Molecular analysis of sodium butyrate-induced growth arrest. Oncogene Res. 3: 223–238.

    PubMed  CAS  Google Scholar 

  85. Russo, G.L., V. Della Pietra, C. Mercurio, E Della Ragione, D.R. Marshak, A. Oliva, and V. Zappia. 1997. Down-regulation of protein kinase CKII activity by sodium butyrate. Biochem. Biophys. Res. Commun. 233: 673–677.

    Google Scholar 

  86. Huet, C., C. Sahuquillo-Merino, E. Coudrier, and D. Louvard. 1987. Absorptive and mucus-secreting subclones isolated from a multipotent intestinal cell line (HT-29) provide new models for cell polarity and terminal differentiation. J. Cell Biol. 105: 345–357.

    PubMed  CAS  CrossRef  Google Scholar 

  87. Gum, J.R., W.K. Kam, J.C. Byrd, J.W. Hicks, M.H. Sleisenger, and Y.S. Kim. 1987. Effects of sodium butyrate on human colonic adenocarcinoma cells. J. Biol. Chem. 262: 1092–1097.

    Google Scholar 

  88. Wice, B.M., G. Trugman, M. Pinto, M. Rousset, G. Chevalier, E. Dussaulx, B. Lacroix, and A. Zweibaum. 1985. The intracellular accumulation of UDP-N-acetylhexosamines is concomitant with the inability of human colon cancer cells to differentiate. J. Biol. Chem. 260: 139–146.

    Google Scholar 

  89. Siavoshian, S., H.M. Blottiere, C. Cherbut, and J.-P. Galmiche. 1997. Butyrate stimulates cyclin D and p21 and inhibits cyclin-dependent kinase 2 expression in HT-29 colonic epithelial cells. Biochem. Biophys. Res. Commun. 232: 169–172.

    Google Scholar 

  90. Lallemand, E, D. Courilleau, M. Sabbah, G. Redeuilh, and J. Mester. 1996. Direct inhibition of the expression of cyclin Dl gene by sodium butyrate. Biochem. Biophys. Res. Commun. 229: 163–169.

    Google Scholar 

  91. Buquet-Fagot, C., E. Lallemand, L.H. Charollais, and J. Mester. 1996. Sodium butyrate inhibits the phosphorylation of the retinoblastoma gene product in mouse fibroblasts by a transcription-ependent mechanism. J. Cell Physiol. 166: 631–636.

    PubMed  CAS  CrossRef  Google Scholar 

  92. Yen, A. and R. Sturgi11. 1998. Hypophosphorylation of the RB protein in S and G2 as well as Gl during growth arrest. Exp. Cell Res. 241: 324–331.

    Google Scholar 

  93. Kitagawa, M., T. Okabe, H. Ogino, H. Matsumoto, I. Suzuki-Takahashi, T. Kokubo, H. Higashi, S. Saitoh, Y. Taya, H. Yasuda, et al. 1993. Butyrolactone I, a selective inhibitor of cdk2 and cdc2 kinase. Oncogene. 8: 2425–2432.

    PubMed  CAS  Google Scholar 

  94. Kitagawa, M., H. Higashi, I. Suzuki-Takahashi, T. Okabe, H. Ogino, Y. Taya, S. Nishimura, and A. Okuyama. 1994. A cyclin-dependent kinase inhibitor, butyrolactone I, inhibits phosphorylation of RB protein and cell cycle progression. Oncogene. 9: 2549–2557.

    PubMed  CAS  Google Scholar 

  95. Nasmyth, K. 1996. Viewpoint: putting the cell cycle in order. Science. 274: 1643–1645.

    PubMed  CAS  CrossRef  Google Scholar 

  96. King, R.W., R.J. Deshaies, J.-M. Peters, and M.W. Kirshner. 1996. How proteolysis drives the cell cycle. Science. 274: 1652–1659.

    PubMed  CAS  CrossRef  Google Scholar 

  97. Stillman, B. 1996. Cell cycle control of DNA replication. Science. 274: 1659–1664.

    PubMed  CAS  CrossRef  Google Scholar 

  98. Elledge, S.J. 1996. Cell cycle checkpoints: preventing an identity crisis. Science. 274: 1664–1672.

    PubMed  CAS  CrossRef  Google Scholar 

  99. Sherr, C.J. 1996. Cancer cell cycle. Science. 274: 1672–1677.

    PubMed  CAS  CrossRef  Google Scholar 

  100. Xiong, Y., G.J. Hannon, H. Zhang, D. Casso, R. Kobayashi, and D. Beach. 1993. p21 is a universal inhibitor of cyclin kinases. Nature. 366: 701–704.

    Google Scholar 

  101. El-Deity W.S., T. Tokino, V.E. Velculescu, D.B. Levy, R. Parsons, J.M. Trent, D. Lin, W.E. Mercer, K.W. Kinzler, and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell. 75: 817–825.

    CrossRef  Google Scholar 

  102. Xiao, H., T. Hasegawa, O. Miyaishi, K. Ohkusu, and K. Isobe. 1997. Sodium butyrate induces NIH3T3 cells to senescence-like state and enhances promoter activity of p21 WAF/CIP1 in p53-independent manner. Biochem. Biophys. Res. Commun. 237: 457–460.

    Google Scholar 

  103. Nakano, K., T. Mizuno, Y. Sowa, T. Orita, T. Yoshino, Y. Okuyama, T. Fujita, N. Ohtani-Fujita, Y. Matsukawa, T. Tokino, et al. 1997. Butyrate activates the WAFT/Cipl gene promoter through Spl sites in a p53-negative human colon cancer cell line. J. Biol. Chem. 272: 22199–22206.

    Google Scholar 

  104. Evers, B.M., T.C. Ko, J. Li, and E.A. Thompson. 1996. Cell cycle protein suppression and p21 induction in differentiating Caco-2 cells. Am. J. Physiol. 271: G722 - G727.

    PubMed  CAS  Google Scholar 

  105. Archer, S.Y., S. Meng, A. Shei, and R.A. Hodin. 1998. p21WAF1 is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc. Natl. Acad. Sci. USA. 95: 6791–6796.

    Google Scholar 

  106. Saini, K.S. and N.I. Walker. 1998. Biochemical and molecular mechanisms regulating apoptosis. Mol. Cell Biochem. 178: 9–25.

    Google Scholar 

  107. Jacobson, M.D., M. Weil, and M.C. Raff. 1997. Programmed cell death in animal development. Cell. 88: 347–354.

    PubMed  CAS  CrossRef  Google Scholar 

  108. Nagata, S. 1997. Apoptosis by death factor. Cell. 88: 355–365.

    PubMed  CAS  CrossRef  Google Scholar 

  109. Evan, G. and T. Littlewood. 1998. A matter of life and cell death. Science. 281: 1317–1322.

    PubMed  CAS  CrossRef  Google Scholar 

  110. Green, D.R. and J.C. Reed. 1998. Mitochondria and apoptosis. Science. 281: 1309–1312.

    PubMed  CAS  CrossRef  Google Scholar 

  111. Adams, J.M. and S. Cory. 1998. The Bel-2 protein family: arbiters of cell survival. Science. 281: 1322–1326.

    PubMed  CAS  CrossRef  Google Scholar 

  112. Thornberry, N.A. and Y. Lazebnik. 1998. Caspases: enemies within. Science. 281: 1312–1316.

    PubMed  CAS  CrossRef  Google Scholar 

  113. White, E. 1996. Life, death, and the pursuit of apoptosis. Genes & Dev. 10: 1–15.

    CAS  CrossRef  Google Scholar 

  114. Hague, A., A.M. Manning, K.A. Hanlon, L.I. Huschtscha, D. Hart, and C. Paraskeva. 1993. Sodium butyrate induces apoptosis in human colonic tumour cell lines in a p53-independent pathway: implications for the possible role of dietary fibre in the prevention of large-bowel cancer. Int. J. Cancer. 55: 498–505.

    Google Scholar 

  115. McBain, J.A., A. Eastman, C.S. Nobel, and G.C. Mueller. 1997. Apoptotic death in adenocarcinoma cell lines induced by butyrate and other histone deacetylase inhibitors. Biochem. Pharmacol. 53: 1357–1368.

    Google Scholar 

  116. Marchetti, M.C., G. Migliorati, R. Moraca, C. Riccardi, I. Nicoletti, R. Fabiani, V. Mastrandrea, and G. Morozzi. 1997. Possible mechanisms involved in apoptosis of colon tumor cell lines induced by deoxycholic acid, short-chain fatty acids, and their mixtures. Nutr. Cancer. 28: 74–80.

    Google Scholar 

  117. Marchetti, M.C., G. Migliorati, R. Moraca, C. Riccardi, I. Nicoletti, R. Fabiani, V. Mastrandrea, and G. Morozzi. 1997. Deoxycholic acid and SCFA-induced apoptosis in the human tumor cell-line HT-29 and possible mechanisms. Cancer Lett. 114: 97–99.

    PubMed  CAS  CrossRef  Google Scholar 

  118. Boisteau, O., B. Lieubeau, I. Barbieux, S. Cordel, K. Meflah, and M. Gregoire. 1996. Induction of apoptosis, in vitro and in vivo, on colonic tumor cells of the rat after sodium butyrate treatment. Bull. Cancer (Paris). 83: 197–204.

    Google Scholar 

  119. Chang, S.T. and B.Y. Yung. 1996. Potentiation of sodium butyrate-induced apoptosis by vanadate in human promyelocytic leukemia cell line HL-60. Biochem. Biophys. Res Commun. 221: 594–601.

    Google Scholar 

  120. Heerdt, B.G., M.A. Houston, G.M. Anthony, and L.H. Augenlicht. 1998. Mitochondrial membrane potential (delta psi(mt)) in the coordination of p53-independent proliferation and apoptosis pathways in human colonic carcinoma cells. Cancer Res. 58: 2869–2875.

    PubMed  CAS  Google Scholar 

  121. Filippovich, I., N. Sorokina, K.K. Khanna, and M.F. Lavin. 1994. Butyrate induced apoptosis in lymphoid cells preceded by transient over-expression of HSP70 mRNA. Biochem. Biophys. Res. Commun. 198: 257–265.

    Google Scholar 

  122. Mandai, M., X. Wu, and R. Kumar. 1997. Bcl-2 deregulation leads to inhibition of sodium butyrate-induced apoptosis in human colorectal carcinoma cells. Carcinogenesis. 18: 229–232.

    CrossRef  Google Scholar 

  123. Palmer, D.G., C. Paraskeva, and A.C. Williams. 1997. Modulation of p53 expression in cultured colonic adenoma cell lines by naturally occurring lumenal factors butyrate and deoxycholate. Int. J. Cancer. 73: 702–706.

    Google Scholar 

  124. Janson, W., G. Brandner, and J. Siegel. 1997. Butyrate modulates DNA-damage-induced p53 response by induction of p53-independent differentiation and apoptosis. Oncogene. 15: 1395–1406.

    PubMed  CAS  CrossRef  Google Scholar 

  125. Hass, R., R. Busche, L. Luciano, E. Reale, and W.V. Engelhardt. 1997. Lack of butyrate is associatyed with induction of Bax and subsequent apoptosis in the proximal colon of Guinea pig. Gastroenterology. 112: 875–881.

    PubMed  CAS  CrossRef  Google Scholar 

  126. Yamamoto, H., J.W. Soh, H. Shirin, W.Q. Xing, J.T. Lim, Y. Yao, E. Slosberg, N. Tomita, I. Schieren, and I.B. Weinrein. 1999. Comparative effects of overexpression of p27Kipl and p21Cip1/Wafl on growth and differentiation in human colon carcinoma cells. Oncogene. 18: 103–115.

    PubMed  CrossRef  CAS  Google Scholar 

  127. Ellerhorst, J., T. Nguyen, D.N. Cooper, Y. Estrov, D. Lotan, and R. Lotan. 1999. Induction of differentiation and apoptosis in the prostate cancer cell line LNCaP by sodium butyrate and galectin-1. Int. J. Oncol. 14: 225–232.

    Google Scholar 

  128. Thompson, M.A., M.A. Rosenthal, S.L. Ellis, A.J. Friend, M.I. Zorbas, R.H. Whitehead, and R.G. Ramsay. 1998. c-Myb down-regulation is associated with human colon cell differentiation, apoptosis, and decreased Bc1–2 expression. Cancer Res. 58: 5168–5175.

    Google Scholar 

  129. Schwartz, B., C. Avivi-Green, and S. Polak-Charcon. 1998. Sodium butyrate induces retinoblastoma protein dephosphorylation, p16 expression and growth arrest of colon cancer cells. Mol. Cell Biochem. 188: 21–30.

    Google Scholar 

  130. Hall, P.A., P.J. Coates, B. Ansari, and D. Hopwood. 1994. Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J. Cell Sci. 107: 3569–3577.

    PubMed  CAS  Google Scholar 

  131. Pinna, L.A. 1990. Casein kinase 2: an `eminence grise’ in cellular regulation? Biochim. Biophys. Acta. 1054: 267–284.

    Google Scholar 

  132. Pinna, L.A. and F. Meggio. 1997. Protein kinase CK2 (“casein kinase-2”) and its implication in cell division and proliferation, pp. 77–97. In L. Meijer, S. Guidet, and M. Philippe (ed.), Progress in cell cycle research, vol. 3. Plenum Press, New York, USA.

    Google Scholar 

  133. Tuazon, P.T. and J.A. Traugh. 1991. Casein kinase I and II-multipotential serine protein kinases: structure function and regulation. Adv. Second Messenger Phosphoprot. Res. 23: 123–163.

    Google Scholar 

  134. Issinger, 0.-G. 1993. Casein kinases: pleiotropic mediators of cellular regulation. Pharmac. Ther. 59: 1–30.

    CrossRef  Google Scholar 

  135. Allende, J.E. and C.C. Allende. 1995. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J. 9: 313–323.

    PubMed  CAS  Google Scholar 

  136. Litchfield, D.W., F.J. Lozeman, M.F. Cicirelli, M. Harrylock, L.H. Ericsson, C.J. Piening, and E.G. Krebs. 1991. Phoshorylation of the b subunit of casein kinase II in human A431 cells. J. Biol. Chem. 266: 20380–20389.

    Google Scholar 

  137. Litchfield, D.W., D.G. Bosc, and E. Slominski. 1995. The protein kinase from mitotic cells that phosphorylates Ser-209 on the casein kinase II beta-subunit is p34cdc2. Biochim. Biophys. Acta. 1269: 69–78.

    Google Scholar 

  138. Draetta, G. and D. Beach. 1988. Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell. 54: 17–26.

    PubMed  CAS  CrossRef  Google Scholar 

  139. Russo, G.L., M.T. Vandenberg, I.J. Yu, Y.-S. Bae, B.R.J. Franza, and D.R. Marshak. 1992. Casein kinase II phosphorylates p34cdc2 kinase in G1 phase of the HeLa cell division cycle. J. Biol. Chem. 267: 20317–20325.

    Google Scholar 

  140. Marshak, D.R. and G.L. Russo. 1994. Regulation of protein kinase CKII during the cell division cycle. Cell Mol. Biol. Res. 40: 513–517.

    Google Scholar 

  141. Gloverrd, C.V. 1998. On the physiological role of casein kinase II in Saccharomyces cerevisiae. Prog. Nucleic. Acid Res. Mol. Biol. 59: 95–133.

    Google Scholar 

  142. Litchfield, D.W., G. Dobrowolska, and E.G. Krebs. 1994. Regulation of casein kinase II by growth factors-a reevaluation. Cell Mol. Biol. Res. 40: 373–381.

    Google Scholar 

  143. Guerra, B., C. Gotz, P. Wagner, M. Montenarh, and O.G. Issinger. 1997. The carboxy terminus of p53 mimics the polylysine effect of protein kinase CK2-catalyzed MDM2 phosphorylation. Oncogene. 14: 2683–2688.

    PubMed  CAS  CrossRef  Google Scholar 

  144. Appel, K., P. Wagner, B. Boldyreff, O.G. Issinger, and M. Montenarh. 1995. Mapping of the interaction sites of the growth suppressor protein p53 with the regulatory beta-subunit of protein kinase CK2. Oncogene. 11: 1971–1978.

    PubMed  CAS  Google Scholar 

  145. Prowald, A., N. Schuster, and M. Montenarh. 1997. Regulation of the DNA binding of p53 by its interaction with protein kinase CK2. FEBS Lett. 408 (1): 99–104.

    PubMed  CAS  CrossRef  Google Scholar 

  146. Gotz, C., P. Wagner, O.G. Issinger, and M. Montenarh. 1996. p21WAF1/CIP1 interacts with protein kinase CK2. Oncogene. 13: 391–398.

    Google Scholar 

  147. Ashkenazi, A. and V.M. Dixit. 1998. Death receptors: signaling and modulation. Science. 281: 1305–1308.

    PubMed  CAS  CrossRef  Google Scholar 

  148. Carducci, M.A., J.B. Nelson, K.M. Chan-Tack, S.R. Ayyagari, W.H. Sweatt, P.A. Campbell, W.G. Nelson, and J.W. Simons. 1996. Phenylbutyrate induces apoptosis in human prostate cancer and is more potent than phenylacetate. Clin. Cancer Res. 2: 379–387.

    Google Scholar 

  149. Siu, L.L., D.D. Von Hoff, A. Rephaeli, E. Izbicka, C. Cerna, L. Gomez, E.K. Rowinsky, and S.G. Eckhardt. 1998. Activity of pivaloyloxymethyl butyrate, a novel anticancer agent, on primary human tumor colony-forming units. Invest. New Drugs. 16: 113–119.

    Google Scholar 

  150. Hague, A., B. Singh, and C. Paraskeva. 1997. Butyrate acts as a survival factor for colonic epithelial cells: further fuel for the in vivo versus in vitro debate. Gastroenterology. 112: 1036–1039.

    PubMed  CAS  CrossRef  Google Scholar 

  151. Calabresse, C., L. Venturini, G. Ronco, P. Villa, L. Degos, D. Belpomme, and C. Chomienne. 1994. Selective induction of apoptosis in myeloid leukemic cell lines by monoacetone glucose-3 butyrate. Biochem. Biophys. Res. Commun. 201: 266–283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Russo, G.L. et al. (1999). Protective Effects of Butyric Acid in Colon Cancer. In: Zappia, V., Della Ragione, F., Barbarisi, A., Russo, G.L., Iacovo, R.D. (eds) Advances in Nutrition and Cancer 2. Advances in Experimental Medicine and Biology, vol 472. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3230-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3230-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3331-7

  • Online ISBN: 978-1-4757-3230-6

  • eBook Packages: Springer Book Archive