Advances in Nutrition and Cancer 2 pp 131-147

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 472) | Cite as

Protective Effects of Butyric Acid in Colon Cancer

  • Gian Luigi Russo
  • Valentina Della Pietra
  • Ciro Mercurio
  • Rosanna Palumbo
  • Giuseppe Iacomino
  • Maria Russo
  • Mariarosaria Tosto
  • Vincenzo Zappia

Abstract

A great deal of evidence indicates that cancer is the result of a reciprocal interaction between genetic susceptibility and environmental factors. Apparently, only 5% of all cancers is linked to genetic, inheritable alterations, while the remainder is associated with environmental conditions that act in concert with individual susceptibility.1 In this context, dietary habit covers a fundamental role. Following the recent publication from the American Institute for Cancer Research2 (AICR), a “correct” diet could decrease the cancer rate by as much as 20%. For some specific cancers, the effect is even more dramatic: from 33 to 50% of breast cancer can be prevented through diet, and as much as 33% of lung cancer and 75% of colorectal cancers are prevented by correct diet choices. Colorectal cancer represents one of the well studied cancers at the molecular level: here, the steps of tumor progression show in vivo an accumulation of morphological changes that result in vivo in mutations in specific genes. Loss of function of the APC tumor suppressor gene causes hyperproliferation of normal epithelium and early adenoma; the subsequent activation of k-ras oncogene and inactivation of DCC and p53 tumor suppressor genes are associated with late adenoma and carcinoma.3,4 Colorectal cancers are very common causing over 50,000 deaths per year in the United States, 11% of total deaths from cancer. They result from the combined effect of inherited factors and stochastic genetic mutations, partially related to environmental conditions such as diet composition.5 Considerable epidemiological data support the hypothesis that a diet rich in fiber is associated with a decreased risk of intestinal cancers.6,7 Although this views appears simplistic and remains controversial for many aspects, it is currently generally accepted. In fact, one of the fifteen recommendations of the AICR advises to “eat a variety of vegetables and fruits all year round”.2 Several mechanisms have been considered in order to explain the protective effect of dietary fiber (DF). They include dilution of luminal carcinogen concentration, fiber-associated changes in colonic transit that decrease colonic enterocyte exposure to luminal carcinogens, interactions with intestinal contents, production of tissue factors by stimulation of colonic mucosa, role of bile acids and direct antineoplastic activity by DF components.8–13 A different mechanism by which fiber may modulate carcinogenesis is related to the production of butyric acid (BA), a component of the short-chain fatty acids (SFCA) obtained by degradation of poorly fermented fiber by colonic microflora. This review will focus on the molecular aspects that affect the activity of BA on in vivo and in vivo models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perera, F.P. 1996. Molecular epidemiology: insights into cancer susceptibility, risk assssment, and prevention. J. Natl. Cancer Institute. 88: 496–509.CrossRefGoogle Scholar
  2. 2.
    American Institute for Cancer Research. 1997. Food, nutrition, and the prevention of cancer: a global perspective.Google Scholar
  3. 3.
    Aaltonen, L.A., P. Peltomaki, F.S. Leach, P. Sistonen, L. Pylkkanen, J.P. Mecklin, H. Jarvinen, S.M. Powell, J. Jen, S.R. Hamilton, et al. 1993. Clues to the pathogenesis of familial colorectal cancer. Science. 260: 812–816.PubMedCrossRefGoogle Scholar
  4. 4.
    Fearon, E.R. and B. Vogelstein. 1990. A genetic model for colorectal tumorigenesis. Cell. 61: 759–767.PubMedCrossRefGoogle Scholar
  5. 5.
    Rustgi, A.K. and D.K. Podolsky. 1992. The molecular basis of colon cancer. Ann. Rev. Med. 43: 61–68.PubMedCrossRefGoogle Scholar
  6. 6.
    Burkitt, D.P. 1971. Epidemiology of cancer of the colon and rectum. Cancer. 28: 3–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Burkitt, D.P. 1971. Some neglected leads to cancer causation. J. Natl. Cancer Inst. 47: 913–919.PubMedGoogle Scholar
  8. 8.
    Hill, M.J. 1998. Mechanisms proposed for the protective action of fiber against colorectal cancer. Gastroenterology Int. 11 (suppl. 1): 58–61.Google Scholar
  9. 9.
    Smith, J.G., W.H. Yokoyama, and B. German. 1998. Butyric acid from the diet: actions at the level of gene expression. Critical Rev. Food Sci. 38: 259–297.Google Scholar
  10. 10.
    Bugaut, M. and M. Bentéjac. 1993. Biological effects of short-chain fatty acids in nonruminant mammals. Annu. Rev. Nutr. 13: 217–241.Google Scholar
  11. 11.
    Hassing, C.A., J.K. Tong, and S.L. Schreiber. 1997. Fiber-derived butyrate and the prevention of colon cancer. Chem. Biol. 4: 783–789.Google Scholar
  12. 12.
    Klurfeld, D.M. 1992. Dietary fiber-mediated mechanisms in carcinogenesis. Cancer Res. (suppl.). 52: 2055s - 2059s.Google Scholar
  13. 13.
    Eastwood, M.A. 1992. The physiological effect of dietary fiber: an update. Ann. Rev. Nutr. 12: 19–35.CrossRefGoogle Scholar
  14. 14.
    Buckley, A.R., M.A. Leff, D.J. Buckley, N.S. Magnuson, G. de Jong, and P.W. Gout. 1996. Alteration in pim-1 and c-myc expression associated with sodium butyrate-induced growth factor dependency in autonomous rat Nb2 lymphoma cells. Cell Growth Differ. 7: 1713–1721.PubMedGoogle Scholar
  15. 15.
    Gurr, M.I. and N.-G. Asp. 1994. Dietary Fibre. ILSI Press, Brussels.Google Scholar
  16. 16.
    Hill, M.J. and E Fernandez. 1990. Bacterial metabolism, fiber, and colorectal cancer, pp. 417–429. In D. Kritchevsky, C. Bonfield, and J.W. Anderson (ed.), Dietary Fiber. Plenum, New York.Google Scholar
  17. 17.
    Giacosa, A. 1998. RPC consensus cereals, fiber, and colorectal cancer. Gastroenterology Int. 11 (suppl. 1): 66–68.Google Scholar
  18. 18.
    Slattery, M.L., J.D. Potter, A. Coates, et al. 1997. Plant foods and colorectal cancer: an assessment of specific foods and their related nutrients ( United States ). Cancer Causes Control. 8: 575–590.Google Scholar
  19. 19.
    Howe, G.R., E. Benito, R. Castelleto, J. Cornee, J. Esteve, R.E Gallagher, J.M. Iscovich, J. Deng-ao, R. Kaaks, G.A. Kune, et al. 1992. Dietary intake of fiber and decreased risk of cancers of the colon and rectum: evidence from the combined analysis of 13 case-control studies. J. Natl. Cancer Inst. 84: 1887–1896.Google Scholar
  20. 20.
    Willet, W.C., M.J. Stampfer, G.A. Colditz, et al. 1990. Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective study among women. N. Engl. J. Med. 323: 1664–1672.Google Scholar
  21. 21.
    Giovannucci, E., E.B. Rimm, M.J. Stampfer, et al. 1994. Intake of fat, meat, and fiber in relation to risk of colon cancer in men. Cancer Res. 54: 2390–2397.PubMedGoogle Scholar
  22. 22.
    Steinmetz, K.A., L.H. Kushi, R.M. Bostick, et al. 1994. Vegetables, fruit, and colon cancer in the Iowa women’s health study. Am. J. Epidemiol. 139: 1–15.Google Scholar
  23. 23.
    Fuchs, C.S., E.L. Giovannucci, G.A. Colditz, D.J. Hunter, M.J. Stampfer, B. Rosner, F.E. Speizer, and W.C. Willett. 1999. Dietary fiber and the risk of colorectal cancer and adenoma in women. N. Engl. J. Med. 340: 169–176.Google Scholar
  24. 24.
    Negri, E. and C. La Vecchia. 1998. Dietary fiber and colorectal cancer prevention. Gastroenterology Int. 11 (suppl. 1): 56–57.Google Scholar
  25. 25.
    Negri, E., S. Franceschi, M. Parpinel, and C. La Vecchia. 1998. Fiber intake and risk of colorectal cancer. Cancer Epidemiol. Biomarkers Prey. 7: 667–671.Google Scholar
  26. 26.
    Levi, F., C. La Vecchia, E. Lucchini, and E. Negri. 1995. Cancer mortality in Europe, 1990–92. Eur. J. Cancer Prey. 4: 389–417.Google Scholar
  27. 27.
    Miller, T.L. and M.J. Wolin. 1979. Fermentations by saccharolytic intestinal bacteria. Am. J. Clin. Nutr. 32: 164–172.Google Scholar
  28. 28.
    Rombeau, J.L., S.A. Kripke, and R.G. Settle. 1990. Short chain fatty acids. Production, absorption, metabolism, and intestinal effects, pp. 317–323. In D. Kritchevsky, C. Bonfield, and J.W. Anderson (ed.), Dietary Fiber. Plenum Press, New York.CrossRefGoogle Scholar
  29. 29.
    Cummings, J.H., E.W. Pomare, W.J. Branch, C.P.E. Naylor, and G.T. Macfarlane. 1987. Short chain fatty acids in human large intestine, portal, hepatic, and venous blood. Gut. 28: 1221–1227.PubMedCrossRefGoogle Scholar
  30. 30.
    Latella, G. 1998. Effects of SCFA on human colonocytes. Gastroenterology Int. 11 (suppl. 1): 76–79.Google Scholar
  31. 31.
    Bugaut, M. 1987. Occurrence, absorption and metabolism of short chain fatti acids in the digestive tract of mammals. Comp. Biochem. Physiol. B. 86: 439–472.CrossRefGoogle Scholar
  32. 32.
    Rechkemmer, G., K. Ronnau, and W. von Engelhardt. 1988. Fermentation of polysaccharides and absorption of short chain fatty acids in the mammalian hindgut. Comp. Biochem. Physiol. A. 90: 563–568.Google Scholar
  33. 33.
    Titus, E. and G.A. Ahearn. 1992. Vertebrate gastrointestinal fermentation: transport mechanisms for volatile fatty acids. Am. J. Physiol. 262: R547–553.PubMedGoogle Scholar
  34. 34.
    Charney, A.N., L. Micic, and R. Egnor. 1998. Nonionic diffusion of short-chain fatty acids across rat colon. Am. J. Physiol. 274: G518 - G524.PubMedGoogle Scholar
  35. 35.
    Maczulak, A.E., M.J. Wolin, and T.L. Miller. 1993. Amounts of viable anaerobes, methanogens, and bacterial fermentation products in feces of rats fed high-fiber or fiber-free diets. Appl. Environ. Microbiol. 59: 657–662.Google Scholar
  36. 36.
    Knudsen, K.R., B.B. Jensen, and I. Hansen. 1993. Oat bran but not a beta-glucan-enriched oat fraction enhances butyrate production in the large intestine of pigs. J. Nutr. 123: 1235–1247.PubMedGoogle Scholar
  37. 37.
    Lupton, J.R. and P.P. Kurtz. 1993. Relationship of colonic luminal short-chain fatty acids and pH to in vivo cell proliferation in rats. J. Nutr. 123: 1522–1530.PubMedGoogle Scholar
  38. 38.
    Boffa, L.C., J.R. Lupton, M.R. Mariani, M. Ceppi, H.L. Newmark, A. Scalmati, and M. Lipkin. 1992. Modulation of colonic epithelial cell proliferation, histone acetylation, and luminal short chain fatty acids by variation of dietary fiber (wheat bran) in rats. Cancer Res. 52: 5906–5912.PubMedGoogle Scholar
  39. 39.
    Nordgaard, I., H. Hove, M.R. Clausen, and P.B. Mortensen. 1996. Colonic production of butyrate in patients with previous colonic cancer during long-term treatment with dietary fibre (Plantago ovata seeds). Scand. J. Gastroenterol. 31: 1011–1020.Google Scholar
  40. 40.
    McIntyre, A., G.P. Young, T. Taranto, P.R. Gibson, and P.B. Ward. 1991. Different fibers have different regional effects on luminal contents of rat colon. Gastroenterology. 101: 1274–1281.PubMedGoogle Scholar
  41. 41.
    Jacobs, L.R. 1986. Modification of experimental colon carcinogenesis by dietary fiber. Adv. Exp. Med. Biol. 206: 105–118.PubMedGoogle Scholar
  42. 42.
    Jacobs, L.R. 1986. Relationship between dietary fiber and cancer: metabolic, physiologic, and cellular mechanisms. Proc. Soc. Exp. Biol. Med. 183: 299–310.PubMedGoogle Scholar
  43. 43.
    Jacobs, L.R. and J.R. Lupton. 1986. Relationship between colonic luminal pH, cell proliferation, and colon carcinogenesis in 1,2-dimethylhydrazine treated rats fed high fiber diets. Cancer Res. 46: 1727–1734.PubMedGoogle Scholar
  44. 44.
    Young, G.P., A. McIntyre, T. Taranto, P. Ward, and P.R. Gibson. 1991. Butyrate production from dietary fiber protects against large bowel cancer in a rat model. Gastroenterology. 100: A411.Google Scholar
  45. 45.
    Weaver, G.A., J.A. Krause, T.L. Miller, and M.J. Wolin. 1988. Short chain fatty acid distributions of enema samples from a sigmoidoscopy population: an association of high acetate and low butyrate ratios with adenomatous polyps and colon cancer. Gut. 29: 1539–1543.PubMedCrossRefGoogle Scholar
  46. 46.
    Clausen, M.R., H. Bonnen, and P.B. Mortensen. 1991. Colonic fermentation of dietary fibre to short chain fatty acids in patients with adenomatous polyps and colonic cancer. Gut. 32: 923–928.PubMedCrossRefGoogle Scholar
  47. 47.
    McIntyre, A., P.R. Gibson, and G.P. Young. 1993. Butyrate production from dietary fibre and protection against large bowel cancer in rat model. Gut. 34: 386–391.PubMedCrossRefGoogle Scholar
  48. 48.
    D’Argenio, G., V. Cosenza, M. Delle Cave, P. Iovino, N. Della Valle, G. Lombardi, and G. Mazzacca. 1996. Butyrate enemas in experimental colitis and protection against bowel cancer in rat model. Gastroenterology. 110: 1727–1734.PubMedCrossRefGoogle Scholar
  49. 49.
    Medina, V., J.J. Afonso, H. Alvarez-Arguelles, C. Hernandez, and E. Gonzales. 1998. Sodium butyrate inhibits carcinoma development in a 1,2-dimethylhydrazine-induced rat colon cancer. J. Parenter Enteral. Nutr. 22: 14–17.Google Scholar
  50. 50.
    Caderni, G., C. Luceri, L. Lancioni, L. Tessitore, and P. Dolora. 1998. Slow-release pellets of sodium butyrate increase apoptosis in the colon of rats treated with azoxymethane, without affecting aberrant crypt foci and colonic proliferation. Nutrition and Cancer. 30: 175–181.PubMedCrossRefGoogle Scholar
  51. 51.
    Scheppach, W., H. Sommer, T. Kirchner, G.M. Paganelli, P. Bartram, S. Christi, E Richter, G. Dusel, and H. Kasper. 1992. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology. 103: 51–56.PubMedGoogle Scholar
  52. 52.
    Bradburn, D.M., J.C. Mathers, A. Gunn, J. Burn, P.D. Chapman, and I.D.A. Johnston. 1993. Colonic fermentation of complex carbohydrates in patients with familial adenomatous polyposis. Gut. 34: 630–636.PubMedCrossRefGoogle Scholar
  53. 53.
    Chapman, M.A.S., M.F. Grahn, M.A. Boyle, M. Hutton, J. Rogers, and N.S. Williams. 1994. Butyrate oxidation is impaired in colonic mucosa of suffers of quiescent ulcerative colitis. Gut. 35: 73–76.PubMedCrossRefGoogle Scholar
  54. 54.
    Scheppach, W, S.U. Christi, H.P. Bartram, E. Richter, and H. Kasper. 1997. Effects of short-chain fatty acids on the inflamed colonic mucosa. Scand. J. Gastroenterol. (suppl.). 222: 53–57.Google Scholar
  55. 55.
    Scheppach, W., J.G. Muller, E. Boxberger, G. Dusel, E. Richter, H.P. Bartram, S.U. Christl, C.E. Dempfle, and H. Kasper. 1997. Histological changes in the colonic mucosa following irrigation with short-chain fatty acids. Eur. J. Gastroenterol. Hepatol. 9: 163–168.Google Scholar
  56. 56.
    Mitsuyama, K., T. Saiki, O. Kanauchi, T. Iwanaga, N. Tomiyasu, T. Nishiyama, H. Tateishi, A. Shirachi, M. Ide, A. Suzyki, et al. 1998. Treatment of ulcerative colitis with germinated barley foodstuff feeding: a pilot study. Aliment. Pharmacol. Ther. 12: 1225–1230.Google Scholar
  57. 57.
    Fernandez-Banares, E, J. Hinojosa, J.L. Sanchez-Lombrana, E. Navarro, J.F. Martinez-Salmeron, A. Garcia-Puges, E Gonzalez-Huix, J. Riena, V. Gonzales-Lara, F. Dominguez-Abascal, et al. 1999. Randomized clinical trial of Plantago ovata seeds (dietary fiber) as compared with mesalamine in mantaining remission in ulcerative colitis. Am. J. Gastroenterol. 94: 427–433.Google Scholar
  58. 58.
    Steinhart, A.H., T. Hiruki, A. Brzezinski, and J.P. Baker. 1996. Treatment of left-sided ulcerative colitis with butyrate enemas: a controlled trial. Aliment. Pharmacol. Ther. 10: 729–736.Google Scholar
  59. 59.
    Velazquez, O.C., H.M. Lederer, and J.L. Rombeau. 1993. Butyrate and the colonocyte. Implication for neoplasia. Dig. Dis. Sci. 41: 723–739.Google Scholar
  60. 60.
    Velazquez, O.C. and J.L. Rombeau. 1997. Butyrate. Potential role in colon cancer prevention and treatment. Adv. Exp. Med. Biol. 427: 169–181.Google Scholar
  61. 61.
    Velazquez, O.C., H.M. Lederer, and J.L. Rombeau. 1997. Butyrate and the colonocyte. Production, absorption, metabolism, and therapeutic implication. Adv. Exp. Med. Biol. 427: 123–134.Google Scholar
  62. 62.
    Barnard, J.A., J.A. Delzell, and N.M. Bulus. 1997. Short chain fatty acid regulation of intestinal gene expression. Adv. Exp. Med. Biol. 422: 137–144.Google Scholar
  63. 63.
    Hague, A., A.J. Butt, and C. Paraskeva. 1996. The role of butyrate in human colonic epithelial cells: an energy source or inducer of differentiation and apoptosis. Proc. Nutr. Soc. 55: 937–943.Google Scholar
  64. 64.
    Pouillart, PR 1998. Role of butyric acid and its derivatives in the treatment of colorectal cancer and hemoglobinopathies. Life Sci. 63: 1739–1760.PubMedCrossRefGoogle Scholar
  65. 65.
    Barnard, J.A. and G. Warwick. 1993. Butyrate rapidly induces growth inhibition and differentiation in HT-29 cells. Cell Growth Differ. 4: 495–501.PubMedGoogle Scholar
  66. 66.
    Tanaka, Y., K.K. Bush, T.M. Klauck, and P.J. Higgins. 1989. Enhancement of butyrate-induced differentiation of HT-29 human colon carcinoma cells by 1,25-dihydroxyvitamin D3. Biochem. Pharmacol. 38: 3859–3865.Google Scholar
  67. 67.
    Hodin, R.A., S. Meng, S. Archer, and R. Tang. 1996. Cellular growth state differentially regulates enterocyte gene expression in butyrate-treated HT-29 cells. Cell Growth Differ. 7: 647–653.PubMedGoogle Scholar
  68. 68.
    Garcia-Bermejo, L., N.E. Vilaboa, C. Perez, A. Galan, E. De Blas, and R Aller. 1997. Modulation of heat-shock protein 70 (HSP70) gene expression by sodium butyrate in U-937 promonocytic cells: relationship with differentiation and apoptosis. Exp. Cell Res. 236: 268–274.Google Scholar
  69. 69.
    Yamamoto, H., J. Fujimoto, E. Okamoto, J. Furuyama, T. Tamaoki, and T. Hashimoto-Tamaoki. 1998. Suppression of growth of hepatocellular carcinoma by sodium butyrate in vitro and in vivo. Int. J. Cancer. 76: 897–902.Google Scholar
  70. 70.
    Schroder, C., K. Eckert, and H.R. Maurer. 1998. Tributyrin induces growth inhibitory and differentiating effects on HT-29 colon cancer cells in vitro. Int. J. Oncol. 13: 1335–1340.Google Scholar
  71. 71.
    Herz, E, A. Schermer, M. Halwer, and L.H. Bogart. 1981. Alkaline phosphatase in HT-29, a human colon cancer cell line: influence of sodium butyrate and hyperosmolality. Arch. Biochem. Biophys. 210: 581–591.Google Scholar
  72. 72.
    Rabizadeh, E., M. Shaklai, A. Nudelman, L. Eisenbach, and A. Rephaeli. 1993. Rapid alteration of cmyc and c-jun expression in leukemic cells induced to differentiate by a butyric acid prodrug. FEBS Lett. 328: 225–229.PubMedCrossRefGoogle Scholar
  73. 73.
    Herutz, D.P., G.W. Zirnstein, J.F. Bradley, and P.G. Rothberg. 1993. Sodium butyrate causes an increase in the block to transcriptional elongation in the c-myc gene in SW837 rectal carcinoma cells. J. Biol. Chem. 268: 20466–20472.Google Scholar
  74. 74.
    Sauleimani, A. and C. Asselin. 1993. Regulation of c-myc expression by sodium butyrate in the colon carcinoma cell line Caco-2. FEBS Lett. 326: 45–50.CrossRefGoogle Scholar
  75. 75.
    Sauleimani, A. and C. Asselin. 1993. Regulation of c-fos expression by sodium butyrate in the human colon carcinoma cell line Caco-2. Biochem. Biophys. Res. Commun. 193: 330–336.Google Scholar
  76. 76.
    Czerniak, B., E. Herz, R.P. Wersto, and L.G. Koss. 1987. Modification of Ha-ras oncogene p21 expression and cell cycle progression in the human colonic cancer cell line HT-29. Cancer Res. 47: 2826–2830.PubMedGoogle Scholar
  77. 77.
    Li, S., S. Ke, and R.J. Budde. 1996. The C-terminal Src kinase (Csk) is widely expressed, active in HT-29 cells that contain activated Src, and its expression is downregulated in butyrate-treated SW620 cells. Cell Biol. Int. 20: 723–729.Google Scholar
  78. 78.
    Heerdt, B.G. and L.H. Augenlicht. 1991. Effect of fatty acids on expression of genes encoding subunits of cytochrome c oxidase and cytochrome c oxidase activity in HT29 human colonic adenocarcinoma cells. J. Biol. Chem. 266: 19120–19125.Google Scholar
  79. 79.
    Moore-Hoon, M.L. and R.J. Turner. 1998. Increased expression of the secretory Na+-K+-2C1cotrasporter with differentiation of a human intestinal cell line. Biochem. Biophys. Res. Commun. 244: 15–19.Google Scholar
  80. 80.
    Dangond, F. and S.R. Gullans. 1998. Differential expression of human histone deacetylase mRNAs in response to immune cell apoptosis induction by trichostatin A and butyrate. Biochem. Biophys. Res. Commun. 247: 833–837.Google Scholar
  81. 81.
    Cuisset, L., L. Tichonicky, and M. Delpech. 1998. A protein phosphatase is involved in the inhibition of histone deacetylation by sodium butyrate. Biochem. Biophys. Res. Commun. 29: 760–764.Google Scholar
  82. 82.
    Saunders, N., A. Dicker, C. Popa, S. Jones, and A. Dahler. 1999. Histone deacetylase inhibitors as potential antiskin cancer agent. Cancer Res. 59: 399–404.PubMedGoogle Scholar
  83. 83.
    Bohm, L., F.A. Achneeweiss, R.N. Sharan, and L.E. Feinendegen. 1997. Influenze of histone acetylation on the modification of cytoplasmic and nuclear proteins by ADP-ribosylation in response to free radicals. Biochim. Biophys. Acta. 1334: 149–154.Google Scholar
  84. 84.
    Toscani, A., D.R. Soprano, and K.J. Soprano. 1988. Molecular analysis of sodium butyrate-induced growth arrest. Oncogene Res. 3: 223–238.PubMedGoogle Scholar
  85. 85.
    Russo, G.L., V. Della Pietra, C. Mercurio, E Della Ragione, D.R. Marshak, A. Oliva, and V. Zappia. 1997. Down-regulation of protein kinase CKII activity by sodium butyrate. Biochem. Biophys. Res. Commun. 233: 673–677.Google Scholar
  86. 86.
    Huet, C., C. Sahuquillo-Merino, E. Coudrier, and D. Louvard. 1987. Absorptive and mucus-secreting subclones isolated from a multipotent intestinal cell line (HT-29) provide new models for cell polarity and terminal differentiation. J. Cell Biol. 105: 345–357.PubMedCrossRefGoogle Scholar
  87. 87.
    Gum, J.R., W.K. Kam, J.C. Byrd, J.W. Hicks, M.H. Sleisenger, and Y.S. Kim. 1987. Effects of sodium butyrate on human colonic adenocarcinoma cells. J. Biol. Chem. 262: 1092–1097.Google Scholar
  88. 88.
    Wice, B.M., G. Trugman, M. Pinto, M. Rousset, G. Chevalier, E. Dussaulx, B. Lacroix, and A. Zweibaum. 1985. The intracellular accumulation of UDP-N-acetylhexosamines is concomitant with the inability of human colon cancer cells to differentiate. J. Biol. Chem. 260: 139–146.Google Scholar
  89. 89.
    Siavoshian, S., H.M. Blottiere, C. Cherbut, and J.-P. Galmiche. 1997. Butyrate stimulates cyclin D and p21 and inhibits cyclin-dependent kinase 2 expression in HT-29 colonic epithelial cells. Biochem. Biophys. Res. Commun. 232: 169–172.Google Scholar
  90. 90.
    Lallemand, E, D. Courilleau, M. Sabbah, G. Redeuilh, and J. Mester. 1996. Direct inhibition of the expression of cyclin Dl gene by sodium butyrate. Biochem. Biophys. Res. Commun. 229: 163–169.Google Scholar
  91. 91.
    Buquet-Fagot, C., E. Lallemand, L.H. Charollais, and J. Mester. 1996. Sodium butyrate inhibits the phosphorylation of the retinoblastoma gene product in mouse fibroblasts by a transcription-ependent mechanism. J. Cell Physiol. 166: 631–636.PubMedCrossRefGoogle Scholar
  92. 92.
    Yen, A. and R. Sturgi11. 1998. Hypophosphorylation of the RB protein in S and G2 as well as Gl during growth arrest. Exp. Cell Res. 241: 324–331.Google Scholar
  93. 93.
    Kitagawa, M., T. Okabe, H. Ogino, H. Matsumoto, I. Suzuki-Takahashi, T. Kokubo, H. Higashi, S. Saitoh, Y. Taya, H. Yasuda, et al. 1993. Butyrolactone I, a selective inhibitor of cdk2 and cdc2 kinase. Oncogene. 8: 2425–2432.PubMedGoogle Scholar
  94. 94.
    Kitagawa, M., H. Higashi, I. Suzuki-Takahashi, T. Okabe, H. Ogino, Y. Taya, S. Nishimura, and A. Okuyama. 1994. A cyclin-dependent kinase inhibitor, butyrolactone I, inhibits phosphorylation of RB protein and cell cycle progression. Oncogene. 9: 2549–2557.PubMedGoogle Scholar
  95. 95.
    Nasmyth, K. 1996. Viewpoint: putting the cell cycle in order. Science. 274: 1643–1645.PubMedCrossRefGoogle Scholar
  96. 96.
    King, R.W., R.J. Deshaies, J.-M. Peters, and M.W. Kirshner. 1996. How proteolysis drives the cell cycle. Science. 274: 1652–1659.PubMedCrossRefGoogle Scholar
  97. 97.
    Stillman, B. 1996. Cell cycle control of DNA replication. Science. 274: 1659–1664.PubMedCrossRefGoogle Scholar
  98. 98.
    Elledge, S.J. 1996. Cell cycle checkpoints: preventing an identity crisis. Science. 274: 1664–1672.PubMedCrossRefGoogle Scholar
  99. 99.
    Sherr, C.J. 1996. Cancer cell cycle. Science. 274: 1672–1677.PubMedCrossRefGoogle Scholar
  100. 100.
    Xiong, Y., G.J. Hannon, H. Zhang, D. Casso, R. Kobayashi, and D. Beach. 1993. p21 is a universal inhibitor of cyclin kinases. Nature. 366: 701–704.Google Scholar
  101. 101.
    El-Deity W.S., T. Tokino, V.E. Velculescu, D.B. Levy, R. Parsons, J.M. Trent, D. Lin, W.E. Mercer, K.W. Kinzler, and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell. 75: 817–825.CrossRefGoogle Scholar
  102. 102.
    Xiao, H., T. Hasegawa, O. Miyaishi, K. Ohkusu, and K. Isobe. 1997. Sodium butyrate induces NIH3T3 cells to senescence-like state and enhances promoter activity of p21 WAF/CIP1 in p53-independent manner. Biochem. Biophys. Res. Commun. 237: 457–460.Google Scholar
  103. 103.
    Nakano, K., T. Mizuno, Y. Sowa, T. Orita, T. Yoshino, Y. Okuyama, T. Fujita, N. Ohtani-Fujita, Y. Matsukawa, T. Tokino, et al. 1997. Butyrate activates the WAFT/Cipl gene promoter through Spl sites in a p53-negative human colon cancer cell line. J. Biol. Chem. 272: 22199–22206.Google Scholar
  104. 104.
    Evers, B.M., T.C. Ko, J. Li, and E.A. Thompson. 1996. Cell cycle protein suppression and p21 induction in differentiating Caco-2 cells. Am. J. Physiol. 271: G722 - G727.PubMedGoogle Scholar
  105. 105.
    Archer, S.Y., S. Meng, A. Shei, and R.A. Hodin. 1998. p21WAF1 is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc. Natl. Acad. Sci. USA. 95: 6791–6796.Google Scholar
  106. 106.
    Saini, K.S. and N.I. Walker. 1998. Biochemical and molecular mechanisms regulating apoptosis. Mol. Cell Biochem. 178: 9–25.Google Scholar
  107. 107.
    Jacobson, M.D., M. Weil, and M.C. Raff. 1997. Programmed cell death in animal development. Cell. 88: 347–354.PubMedCrossRefGoogle Scholar
  108. 108.
    Nagata, S. 1997. Apoptosis by death factor. Cell. 88: 355–365.PubMedCrossRefGoogle Scholar
  109. 109.
    Evan, G. and T. Littlewood. 1998. A matter of life and cell death. Science. 281: 1317–1322.PubMedCrossRefGoogle Scholar
  110. 110.
    Green, D.R. and J.C. Reed. 1998. Mitochondria and apoptosis. Science. 281: 1309–1312.PubMedCrossRefGoogle Scholar
  111. 111.
    Adams, J.M. and S. Cory. 1998. The Bel-2 protein family: arbiters of cell survival. Science. 281: 1322–1326.PubMedCrossRefGoogle Scholar
  112. 112.
    Thornberry, N.A. and Y. Lazebnik. 1998. Caspases: enemies within. Science. 281: 1312–1316.PubMedCrossRefGoogle Scholar
  113. 113.
    White, E. 1996. Life, death, and the pursuit of apoptosis. Genes & Dev. 10: 1–15.CrossRefGoogle Scholar
  114. 114.
    Hague, A., A.M. Manning, K.A. Hanlon, L.I. Huschtscha, D. Hart, and C. Paraskeva. 1993. Sodium butyrate induces apoptosis in human colonic tumour cell lines in a p53-independent pathway: implications for the possible role of dietary fibre in the prevention of large-bowel cancer. Int. J. Cancer. 55: 498–505.Google Scholar
  115. 115.
    McBain, J.A., A. Eastman, C.S. Nobel, and G.C. Mueller. 1997. Apoptotic death in adenocarcinoma cell lines induced by butyrate and other histone deacetylase inhibitors. Biochem. Pharmacol. 53: 1357–1368.Google Scholar
  116. 116.
    Marchetti, M.C., G. Migliorati, R. Moraca, C. Riccardi, I. Nicoletti, R. Fabiani, V. Mastrandrea, and G. Morozzi. 1997. Possible mechanisms involved in apoptosis of colon tumor cell lines induced by deoxycholic acid, short-chain fatty acids, and their mixtures. Nutr. Cancer. 28: 74–80.Google Scholar
  117. 117.
    Marchetti, M.C., G. Migliorati, R. Moraca, C. Riccardi, I. Nicoletti, R. Fabiani, V. Mastrandrea, and G. Morozzi. 1997. Deoxycholic acid and SCFA-induced apoptosis in the human tumor cell-line HT-29 and possible mechanisms. Cancer Lett. 114: 97–99.PubMedCrossRefGoogle Scholar
  118. 118.
    Boisteau, O., B. Lieubeau, I. Barbieux, S. Cordel, K. Meflah, and M. Gregoire. 1996. Induction of apoptosis, in vitro and in vivo, on colonic tumor cells of the rat after sodium butyrate treatment. Bull. Cancer (Paris). 83: 197–204.Google Scholar
  119. 119.
    Chang, S.T. and B.Y. Yung. 1996. Potentiation of sodium butyrate-induced apoptosis by vanadate in human promyelocytic leukemia cell line HL-60. Biochem. Biophys. Res Commun. 221: 594–601.Google Scholar
  120. 120.
    Heerdt, B.G., M.A. Houston, G.M. Anthony, and L.H. Augenlicht. 1998. Mitochondrial membrane potential (delta psi(mt)) in the coordination of p53-independent proliferation and apoptosis pathways in human colonic carcinoma cells. Cancer Res. 58: 2869–2875.PubMedGoogle Scholar
  121. 121.
    Filippovich, I., N. Sorokina, K.K. Khanna, and M.F. Lavin. 1994. Butyrate induced apoptosis in lymphoid cells preceded by transient over-expression of HSP70 mRNA. Biochem. Biophys. Res. Commun. 198: 257–265.Google Scholar
  122. 122.
    Mandai, M., X. Wu, and R. Kumar. 1997. Bcl-2 deregulation leads to inhibition of sodium butyrate-induced apoptosis in human colorectal carcinoma cells. Carcinogenesis. 18: 229–232.CrossRefGoogle Scholar
  123. 123.
    Palmer, D.G., C. Paraskeva, and A.C. Williams. 1997. Modulation of p53 expression in cultured colonic adenoma cell lines by naturally occurring lumenal factors butyrate and deoxycholate. Int. J. Cancer. 73: 702–706.Google Scholar
  124. 124.
    Janson, W., G. Brandner, and J. Siegel. 1997. Butyrate modulates DNA-damage-induced p53 response by induction of p53-independent differentiation and apoptosis. Oncogene. 15: 1395–1406.PubMedCrossRefGoogle Scholar
  125. 125.
    Hass, R., R. Busche, L. Luciano, E. Reale, and W.V. Engelhardt. 1997. Lack of butyrate is associatyed with induction of Bax and subsequent apoptosis in the proximal colon of Guinea pig. Gastroenterology. 112: 875–881.PubMedCrossRefGoogle Scholar
  126. 126.
    Yamamoto, H., J.W. Soh, H. Shirin, W.Q. Xing, J.T. Lim, Y. Yao, E. Slosberg, N. Tomita, I. Schieren, and I.B. Weinrein. 1999. Comparative effects of overexpression of p27Kipl and p21Cip1/Wafl on growth and differentiation in human colon carcinoma cells. Oncogene. 18: 103–115.PubMedCrossRefGoogle Scholar
  127. 127.
    Ellerhorst, J., T. Nguyen, D.N. Cooper, Y. Estrov, D. Lotan, and R. Lotan. 1999. Induction of differentiation and apoptosis in the prostate cancer cell line LNCaP by sodium butyrate and galectin-1. Int. J. Oncol. 14: 225–232.Google Scholar
  128. 128.
    Thompson, M.A., M.A. Rosenthal, S.L. Ellis, A.J. Friend, M.I. Zorbas, R.H. Whitehead, and R.G. Ramsay. 1998. c-Myb down-regulation is associated with human colon cell differentiation, apoptosis, and decreased Bc1–2 expression. Cancer Res. 58: 5168–5175.Google Scholar
  129. 129.
    Schwartz, B., C. Avivi-Green, and S. Polak-Charcon. 1998. Sodium butyrate induces retinoblastoma protein dephosphorylation, p16 expression and growth arrest of colon cancer cells. Mol. Cell Biochem. 188: 21–30.Google Scholar
  130. 130.
    Hall, P.A., P.J. Coates, B. Ansari, and D. Hopwood. 1994. Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J. Cell Sci. 107: 3569–3577.PubMedGoogle Scholar
  131. 131.
    Pinna, L.A. 1990. Casein kinase 2: an `eminence grise’ in cellular regulation? Biochim. Biophys. Acta. 1054: 267–284.Google Scholar
  132. 132.
    Pinna, L.A. and F. Meggio. 1997. Protein kinase CK2 (“casein kinase-2”) and its implication in cell division and proliferation, pp. 77–97. In L. Meijer, S. Guidet, and M. Philippe (ed.), Progress in cell cycle research, vol. 3. Plenum Press, New York, USA.Google Scholar
  133. 133.
    Tuazon, P.T. and J.A. Traugh. 1991. Casein kinase I and II-multipotential serine protein kinases: structure function and regulation. Adv. Second Messenger Phosphoprot. Res. 23: 123–163.Google Scholar
  134. 134.
    Issinger, 0.-G. 1993. Casein kinases: pleiotropic mediators of cellular regulation. Pharmac. Ther. 59: 1–30.CrossRefGoogle Scholar
  135. 135.
    Allende, J.E. and C.C. Allende. 1995. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J. 9: 313–323.PubMedGoogle Scholar
  136. 136.
    Litchfield, D.W., F.J. Lozeman, M.F. Cicirelli, M. Harrylock, L.H. Ericsson, C.J. Piening, and E.G. Krebs. 1991. Phoshorylation of the b subunit of casein kinase II in human A431 cells. J. Biol. Chem. 266: 20380–20389.Google Scholar
  137. 137.
    Litchfield, D.W., D.G. Bosc, and E. Slominski. 1995. The protein kinase from mitotic cells that phosphorylates Ser-209 on the casein kinase II beta-subunit is p34cdc2. Biochim. Biophys. Acta. 1269: 69–78.Google Scholar
  138. 138.
    Draetta, G. and D. Beach. 1988. Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell. 54: 17–26.PubMedCrossRefGoogle Scholar
  139. 139.
    Russo, G.L., M.T. Vandenberg, I.J. Yu, Y.-S. Bae, B.R.J. Franza, and D.R. Marshak. 1992. Casein kinase II phosphorylates p34cdc2 kinase in G1 phase of the HeLa cell division cycle. J. Biol. Chem. 267: 20317–20325.Google Scholar
  140. 140.
    Marshak, D.R. and G.L. Russo. 1994. Regulation of protein kinase CKII during the cell division cycle. Cell Mol. Biol. Res. 40: 513–517.Google Scholar
  141. 141.
    Gloverrd, C.V. 1998. On the physiological role of casein kinase II in Saccharomyces cerevisiae. Prog. Nucleic. Acid Res. Mol. Biol. 59: 95–133.Google Scholar
  142. 142.
    Litchfield, D.W., G. Dobrowolska, and E.G. Krebs. 1994. Regulation of casein kinase II by growth factors-a reevaluation. Cell Mol. Biol. Res. 40: 373–381.Google Scholar
  143. 143.
    Guerra, B., C. Gotz, P. Wagner, M. Montenarh, and O.G. Issinger. 1997. The carboxy terminus of p53 mimics the polylysine effect of protein kinase CK2-catalyzed MDM2 phosphorylation. Oncogene. 14: 2683–2688.PubMedCrossRefGoogle Scholar
  144. 144.
    Appel, K., P. Wagner, B. Boldyreff, O.G. Issinger, and M. Montenarh. 1995. Mapping of the interaction sites of the growth suppressor protein p53 with the regulatory beta-subunit of protein kinase CK2. Oncogene. 11: 1971–1978.PubMedGoogle Scholar
  145. 145.
    Prowald, A., N. Schuster, and M. Montenarh. 1997. Regulation of the DNA binding of p53 by its interaction with protein kinase CK2. FEBS Lett. 408 (1): 99–104.PubMedCrossRefGoogle Scholar
  146. 146.
    Gotz, C., P. Wagner, O.G. Issinger, and M. Montenarh. 1996. p21WAF1/CIP1 interacts with protein kinase CK2. Oncogene. 13: 391–398.Google Scholar
  147. 147.
    Ashkenazi, A. and V.M. Dixit. 1998. Death receptors: signaling and modulation. Science. 281: 1305–1308.PubMedCrossRefGoogle Scholar
  148. 148.
    Carducci, M.A., J.B. Nelson, K.M. Chan-Tack, S.R. Ayyagari, W.H. Sweatt, P.A. Campbell, W.G. Nelson, and J.W. Simons. 1996. Phenylbutyrate induces apoptosis in human prostate cancer and is more potent than phenylacetate. Clin. Cancer Res. 2: 379–387.Google Scholar
  149. 149.
    Siu, L.L., D.D. Von Hoff, A. Rephaeli, E. Izbicka, C. Cerna, L. Gomez, E.K. Rowinsky, and S.G. Eckhardt. 1998. Activity of pivaloyloxymethyl butyrate, a novel anticancer agent, on primary human tumor colony-forming units. Invest. New Drugs. 16: 113–119.Google Scholar
  150. 150.
    Hague, A., B. Singh, and C. Paraskeva. 1997. Butyrate acts as a survival factor for colonic epithelial cells: further fuel for the in vivo versus in vitro debate. Gastroenterology. 112: 1036–1039.PubMedCrossRefGoogle Scholar
  151. 151.
    Calabresse, C., L. Venturini, G. Ronco, P. Villa, L. Degos, D. Belpomme, and C. Chomienne. 1994. Selective induction of apoptosis in myeloid leukemic cell lines by monoacetone glucose-3 butyrate. Biochem. Biophys. Res. Commun. 201: 266–283.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Gian Luigi Russo
    • 1
  • Valentina Della Pietra
    • 2
  • Ciro Mercurio
    • 2
  • Rosanna Palumbo
    • 1
  • Giuseppe Iacomino
    • 1
  • Maria Russo
    • 1
  • Mariarosaria Tosto
    • 3
  • Vincenzo Zappia
    • 2
  1. 1.Institute of Food Science and TechnologyNational Research CouncilAvellinoItaly
  2. 2.Institute of Biochemistry of MacromoleculesII University of NaplesNaplesItaly
  3. 3.Zoological Station “Anton Dohrn”NaplesItaly

Personalised recommendations