Advertisement

Solution of the Robin and Dirichlet Problem for the Laplace Equation

  • Dagmar Medková Praha
Part of the International Society for Analysis, Applications and Computation book series (ISAA, volume 5)

Abstract

Suppose that GR m (m ≥ 2) is an open set with a non-void compact boundary ∂G such that ∂G = (cl G), where cl G is the closure of G. Fix a nonnegative element λ of C′(∂G) (=the Banach space of all finite signed Borel measures with support in ∂G with the total variation as a norm) and suppose that the single layer potential uλ is bounded and continuous on ∂G. (In R 2 it means that λ = 0. If GR m , (m > 2), ∂G is locally Lipschitz, λ = fℋ, ℋ is the surface measure on the boundary of G, f is a nonnegative bounded measurable function, then uλ is bounded and continuous.)Here
$$\mu \nu (x)\, = \,\int\limits_{{R^m}} {{h_x}(y)\,d\nu (y)} ,$$
where ν ∈ C’(∂G),
$${h_x}(y)\, = \,\left\{ {\begin{array}{*{20}{c}} {{{(m - 2)}^{ - 1}}{A^{ - 1}}{{\left| {x - y} \right|}^{2 - m}},\,m > 2,} \\ {{A^{ - 1}}\log {{\left| {x - y} \right|}^{ - 1}},m = 2,} \end{array}} \right.$$
A is the area of the unit sphere in Rm.

Keywords

Harmonic Function Dirichlet Problem Laplace Equation Potential Theory Neumann Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Angell, T. S., R. E. Kleinman, and J. Kral. (1988). Layer potentials on boundaries with corners and edges, Cas. pest. mat., Vol. 113, (pages 387402).Google Scholar
  2. [2]
    Yu., D. Burago, V. G. Mazya. (1969). Potential theory and function theory for irregular regions, Seminars in mathematics V. A. Steklov Mathematical Institute, Leningrad.Google Scholar
  3. [3]
    Grachev, N. V. and V. G. Maz’ya. (1986). On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries, Vest. Leningrad. Univ., Vol. 19(4), (pages 60–64).Google Scholar
  4. [4]
    Grachev, N. V. and V. G. Maz’ya. Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points, Report LiTH-MAT-R-91–06, Linköping Univ., Sweden.Google Scholar
  5. [5]
    Grachev, N. V. and V. G. Maz’ya. Invertibility of boundary integral operators of elasticity on surfaces with conic points, Report LiTH-MAT-R-91–07, Linköping Univ., Sweden.Google Scholar
  6. [6]
    Grachev, N. V. and V. G. Maz’ya. Solvability of a boundary integral equation on a polyhedron, Report LiTH-MAT-R-91–50, Linköping Univ., Sweden.Google Scholar
  7. [7]
    Chlebfk, M. (1988). Tricomi potentials, Thesis, Mathematical Institute of the Czechoslovak Academy of Sciences Praha (in Slovak).Google Scholar
  8. [8]
    Kral, J. (1964). On double-layer potential in multidimensional space, Dokl. Akad. Nauk SSSR, Vol. 159.Google Scholar
  9. [9]
    Kral, J. (1980). Integral Operators in Potential Theory, Lecture Notes in Mathematics 823, Springer-Verlag, Berlin.Google Scholar
  10. [10]
    Kral, J. (1966). The Fredholm method in potential theory, Trans. Amer. Math. Soc., Vol. 125, (pages 511–547 ).Google Scholar
  11. [11]
    Kral, J. and I. Netuka. (1977). Contractivity of C. Neumann’s operator in potential theory, Journal of the Mathematical Analysis and its Applications, Vol. 61, (pages 607–619 ).Google Scholar
  12. [12]
    Kral, J. and W. L. Wendland. (1986). Some examples concerning applicability of the Fredholm-Radon method in potential theory, Aplikace Matematiky, Vol. 31, (pages 239–308 ).Google Scholar
  13. [13]
    Kress, R. and G. F. Roach. (1976). On the convergence of successive approximations for an integral equation in a Green’s function approach to the Dirichlet problem, Journal of Mathematical Analysis and Applications, Vol. 55, (pages 102–111 ).Google Scholar
  14. [14]
    Maz’ya, V. G. (1988). Boundary integral equations, Sovremennyje problemy matematiki, fundamental’nyje napravlenija, Vol. 27, Viniti, Moskva (Russian).Google Scholar
  15. [15]
    Maz’ya, V. and A. Solov’ev. (1993). On the boundary integral equation of the Neumann problem in a domain with a peak, Amer. Math. Soc. Transi., Vol. 155, (pages 101–127 ).Google Scholar
  16. [16]
    Medkova, D. (in print). The third boundary value problem in potential theory for domains with a piecewise smooth boundary, Czech. Math. J..Google Scholar
  17. [17]
    Medkova, D. (in print). Solution of the Neumann problem for the Laplace equation, Czech. Math. J..Google Scholar
  18. [18]
    Medkova, D. (1997). Solution of the Robin problem for the Laplace equation, preprint No.120, Academy of Sciences of the Czech republic.Google Scholar
  19. [19]
    Netuka, I. (1971). Smooth surfaces with infinite cyclic variation, Cas. pest. mat., Vol. 96.Google Scholar
  20. [20]
    Netuka, I. (1971). The Robin problem in potential theory, Comment. Math. Univ. Carolinae, Vol. 12, (pages 205–211 ).Google Scholar
  21. [21]
    Netuka, I. (1972). Generalized Robin problem in potential theory, Czech. Math. J., Vol. 22(97), (pages 312–324).Google Scholar
  22. [22]
    Netuka, I. (1972). An operator connected with the third boundary value problem in potential theory, Czech Math. J., Vol. 22(97), (pages 462–489).Google Scholar
  23. [23]
    Netuka, I. (1972). The third boundary value problem in potential theory, Czech. Math. J., Vol. 2(97), (pages 554–580).Google Scholar
  24. [24]
    Netuka, I. (1975). Fredholm radius of a potential theoretic operator for convex sets, Cas. pest. mat., Vol. 100, (pages 374–383 ).Google Scholar
  25. [25]
    Neumann, C. (1877). Untersuchungen über das logarithmische und Newtonsche Potential, Teubner Verlag, Leipzig.Google Scholar
  26. [26]
    Neumann, C. (1870). Zur Theorie des logarithmischen und des Newtonschen Potentials, Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Vol. 22, (pages 49–56, 264–321 ).Google Scholar
  27. [27]
    Neumann, C. (1888). Über die Methode des arithmetischen Mittels, Hirzel, Leipzig, 1887 (erste Abhandlung), 1888 (zweite Abhandlung).Google Scholar
  28. [28]
    Plemelj, J. (1911). Potentialtheoretische Untersuchungen, B. G. Teubner, Leipzig.Google Scholar
  29. [29]
    Radon, J. (1919). Über Randwertaufgaben beim logarithmischen Potential, Sitzber. Akad. Wiss. Wien, Vol. 128, (pages 1123–1167 ).Google Scholar
  30. [30]
    Radon, J. (1987). Über Randwertaufgaben beim logarithmischen Potential, Collected Works, Vol. 1, Birkhäuser, Vienna.Google Scholar
  31. [31]
    Rathsfeld, A. (1992). The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method, Applicable Analysis, Vol. 45, (pages 1–4, 135–177 ).Google Scholar
  32. [32]
    Rathsfeld, A. (1995). The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method, Erratum. Applicable Analysis, Vol. 56, (pages 109–115 ).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Dagmar Medková Praha
    • 1
  1. 1.Mathematical Institute of Czech Academy of SciencesPraha 1Czech Republic

Personalised recommendations