EBSD of Ceramic Materials

  • Jeffrey K. Farrer
  • Joseph R. Michael
  • C. Barry Carter


The term “ceramics” covers a very broad range of materials. By definition, ceramics include all nonmetallic inorganic solids, containing both nonmetallic and metallic constituents; the interatomic bonds thus usually have both ionic and covalent character. The usefulness of ceramics in a wide variety of applications stems from properties such as hardness and resistance to heat, corrosion, and electricity. Ceramics are sometimes divided into two groups known as “traditional ceramics” and “new ceramics” (Kingery et al., 1976). The traditional ceramics include those primarily in the silicate industries (e.g., whitewares) and refractories. The new ceramics include electro-optic ceramics, magnetic ceramics, single crystals used for thin-film substrates, those used in the nuclear industry, and pure oxide ceramics to name a few (Kingery et al., 1976). The study of ceramics using electron backscatter diffraction (EBSD) has not yet extended into all of these areas of ceramics. However, EBSD research of certain ceramics has received considerable attention, and this will be the focus of this review.


Ceramic Material Reaction Layer Orientation Mapping Misorientation Angle Electron Backscatter Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, B.L., Wright, S.I., and Kunze, K., 1993, Orientation imaging: the emergence of a new microscopy, Metall. Trans. A, 24A:819.CrossRefGoogle Scholar
  2. Alam, M.N., Blackman, M, and Pashley, D.W., 1954, in Proc. R. Soc. A, 221.Google Scholar
  3. Autrata, R., and Hejna, J., 1991, Detectors for low voltage scanning electron microscopy, Scanning, 13:275.CrossRefGoogle Scholar
  4. Carter, C.B., and Kohlstedt, D.L., 1981, Electron irradiation damage in natural quartz grains, Phys. Chem. Miner. 7:110.CrossRefGoogle Scholar
  5. Cosandey, F., Zhang, L., and Madey, T.E., 1999, Texture determination of ceramic materials by EBSD, Microsc. Microanal. 5(suppl 2):224.Google Scholar
  6. Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F.K., 1988, Orientation dependence of grain-boundary critical currents in YBa2Cu3O7_d bicrystals, Phys. Rev. Lett. 61:219.CrossRefGoogle Scholar
  7. Fairer, J.K., Korte, C, Michael, J.R., Schmalzried, H., and Carter, C.B., 2000, in Prep. Google Scholar
  8. Farrer, J.K., Michael, J.R., and Carter, C.B., 2000, in prep. Google Scholar
  9. Farrer, J.K., Ravishankar, N., Michael, J.R., and Carter, C.B., 2000, in prep. Google Scholar
  10. Faul, U.H., and FitzGerald, J.D., 1999, Grain misorientations in partially molten olivine aggregates: an electron backscatter diffraction study, Phys. Chem. Miner. 26:187.CrossRefGoogle Scholar
  11. Fliervoet, T.F., Drury, M.R., and Chopra, P.N., 1999, Crystallographic preferred orientations and misorientations in some olivine rocks deformed by diffusion or dislocation creep, Tectonophysics, 303:1.CrossRefGoogle Scholar
  12. Frank, F.C., 1988, Orientation mapping, Met. Trans. A, 19:403.CrossRefGoogle Scholar
  13. Garmestani, H., and Harris, K., 1999, Orientation determination by EBSP in an environmental scanning electron microscope, Scripta Mat. 41:47.CrossRefGoogle Scholar
  14. Goehner, R.P., and Michael, J.R., 1996, Phase identification in a scanning electron microscope using backscattered electron Kikuchi patterns, J. Res. Nat. Inst. Stand. Technol. 101:301.CrossRefGoogle Scholar
  15. Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., A.D. Romig, Lyman, J., Fiori, CE. and Lifshin, E., 1992, Scanning Electron Microscopy and X-ray Microanalysis; 2nd ed.; Plenum Press, New York.CrossRefGoogle Scholar
  16. Goyal, A., Specht, E.D., Norton, D.P., Paranthaman, M., List, A., Park, C, Christen, D.K., and Kroeger, D.M., 1997, Texture and grain boundaries in epitaxial oxide multilayers including superconductors, on biaxially textured metal substrates, Microsc. Microanal. 3(suppl. 2):565.Google Scholar
  17. Greedan, J.E., O’Reilly, A.H., and Stager, C.V., 1987, Oxygen ordering in the crystal structure of the 93-K superconductor YBa2Cu3O7 using powder neutron diffraction at 298 and 79.5 K, Phys. Rev. B. 35:8770.CrossRefGoogle Scholar
  18. Gulgun, M.A., Mulvihill, M.L., Putlayev, V., and Ruhle, M., 1998, Microstructure and microchemistry of Y- doped a-Al2O3, Microsc. Microanal. 4(suppl. 2):546.Google Scholar
  19. Heidelbach, F., Kunze, K., and Wenk, H.R., 2000, Texture analysis of a recrystallized quartzite using electron diffraction in the scanning electron microscope, J. Struct. Geol. 22:91.CrossRefGoogle Scholar
  20. Johnson, M.T., Carter, C.B., and Michael, J.R., 1999, SEM analysis of oxide thin films and reactions, J. Am. Ceram. Soc. 82:1644.CrossRefGoogle Scholar
  21. Karato, S., and Lee, K.-H., 1999, in ICOTOM-12; J.A. Szpunar, ed., NRC Research Press: Montreal, 2.Google Scholar
  22. Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., 1976, Introduction to Ceramics; 2nd ed., John Wiley & Sons, New York.Google Scholar
  23. Korte, C, Fairer, J.K., Ravishankar, N., Michael, J.R., Schmalzried, H., and Carter, C.B., 2000, On the influence of applied fields on spinel formation, Mat. Res. Soc. Symp. Proc. 586.Google Scholar
  24. Kotula, P.G., and Carter, C.B., 1993, in 2nd International Conference on Laser Ablation; J.C. Miller and D.B. Geohegan, eds., American Institute of Physics, Knoxville, 288.Google Scholar
  25. Kotula, P.G., Johnson, M.T., and Carter, C.B., 1998, Thin-film reactions, Z. Physik. Chemie. 206 S:73.CrossRefGoogle Scholar
  26. Kronberg, 1957, Plastic deformation of single crystals of sapphire: basal slip and twinning, Acta. Met. 5:507.CrossRefGoogle Scholar
  27. Lee, H.Y., and Kang, S.-J.L., 1990, Chemically induced grain boundary migration and recrystallization in A12O3, Acta Mater. 38:1307.CrossRefGoogle Scholar
  28. Leiss, B., and Barber, D.J., 1999, Mechanisms of dynamic recrystallization in naturally deformed dolomite inferred from EBSP analyses, Tectonophysics, 303:51.CrossRefGoogle Scholar
  29. Mackenzie, R.D., and Carter, C.B., 1985, unpublished. Google Scholar
  30. McKernan, S., and Mansfield, J.F., 1996, A survey of detector options for the “leaky-vacuum” SEM, Microsc. Microanal. 2(suppl. 2): 832.Google Scholar
  31. Michael, J.R., 1997, All you need to know about electron backscatter diffraction: orientation is only the tip of the iceberg, Microsc. Microanal. 3(suppl 2):387.Google Scholar
  32. Michael, J.R., 1999, Phase identification using EBSD in the SEM: what can be done today and what we hope to do tomorrow, Microsc. and Microanal. 5(suppl. 2):220.Google Scholar
  33. Michael, J.R., 2000, in this work. Google Scholar
  34. Mulvihill, M.L., Gulgun, M.A., Bischoff, E., and Ruhle, M., 1998, Orientation imaging microscopy of alpha alumina: sample preparation and texture analysis, Z. Metall. (Germany), 89:546.Google Scholar
  35. Norton, M.G., Summerfelt, S.R. and Carter, C.B., 1990, Surface preparation for the heteroepitactic growth of ceramic thin films, Appl. Phys. Lett. 56:2246.CrossRefGoogle Scholar
  36. Olsson, E., 1988, PhD, Chalmers University of Technology.Google Scholar
  37. Prior, D.J., Boyle, A.P., Brenker, F., Cheadle, M.C., Day, A., Lopez, G., Peruzzo, L., Potts, G.J., Reddy, S., Spiess, R., Timms, N.E., Trimby, P., Wheeler, J., and Zetterstrom, L., 1999, The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks, Am. Mineralog. 84:1741.Google Scholar
  38. Prior, DJ., and Wheeler, J., 1999, Feldspar fabrics in a greenschist facie albite-rich mylonite from electron backscatter diffraction, Tectonophysics, 303:29.CrossRefGoogle Scholar
  39. Raj, P.M., and Cannon, W.R., 1999, Anisotropic shrinkage in tape-cast alumina: role of processing parameters and particle shape, J. Am. Ceram. Soc. 82:2619.CrossRefGoogle Scholar
  40. Ramamurthy, S., 1996, PhD, University of Minnesota.Google Scholar
  41. Randle, V., and Dingley, D., 1989, Measurement of boundary plane inclination in a scanning electron microscope, Scripta Metall. 23:1565.CrossRefGoogle Scholar
  42. Ravishankar, N., and Carter, C.B., 2000, Control of grain boundary microstructures in liquid-phase sintered alumina, Mat. Res. Soc. Symp. Proc. 586.Google Scholar
  43. Ravishankar, N., Johnson, M.T., and Carter, C.B., 2000, Migrating interfaces in sapphire bicrystals and tricrystals, Microsc. Microanal. 7(suppl. 2).Google Scholar
  44. Rollett, A.D., Yang, C.-C, Mullins, W.W., Adams, B.L., Wu, CT., Bauer, C.L., Kinderlehrer, D., Ta’asan, S., Manolache, F., Liu, C, Livshits, I., Mason, D., Talukder, A., özdemir, S., Casasent, D., Morawiec, A., Saylor, D., Rohrer, G.S., El-Dasher, B., and Yang, W., 1999, Extraction of grain boundary energies from triple junction geometry, Microsc. Microanal. 5(suppl. 2):230.Google Scholar
  45. Saylor, D.M., and Rohrer, G.S., 1999, Measuring the influence of grain-boundary misorientation on thermal groove geometry in ceramic polycrystals, J. Am. Ceram. Soc. 82:1529.CrossRefGoogle Scholar
  46. Schmalzried, H., 1981, Solid State Reactions; Verlag Chemie, Weinheim.Google Scholar
  47. Small, J., and Michael, J.R., 1999, Phase identification of individual particles by electron backscatter diffraction (EBSD), Microsc. Microanal. 5(suppl. 2):226.Google Scholar
  48. Susnitzky, D.W., and Carter, C.B., 1991, The formation of copper alumínate by solid-state reaction, J. Mater. Res. 6:1958.CrossRefGoogle Scholar
  49. Susnitzky, D.W., and Carter, C.B., 1992, Surface morphology of heat-treated ceramic thin films, J. Am. Ceram. Soc. 75:2463–2478.CrossRefGoogle Scholar
  50. Thaveeprungsriporn, V., Mansfield, J.F., and Was, G.S., 1994, Development of an economical electron backscattering diffraction system for an environmental scanning electron microscope, J. Mater. Res. 9:1887.CrossRefGoogle Scholar
  51. Trimby, P.W., and Prior, D.J., 1999, Microstructural imaging techniques: a comparison between light andscanning electron microscopy, Tectonophysics, 303:71.CrossRefGoogle Scholar
  52. van Daalen, M., Heilbronner, R., and Kunze, K., 1999, Orientation analysis of localized shear deformation in quartz fibres at the brittle-ductile transition, Tectonophysics, 303:83.CrossRefGoogle Scholar
  53. Venables, J.A., and Harland, C.J., 1973, Electron back-scattering patterns-A new technique for obtaining crystallographic information in the scanning electron microscope, Phil. Mag. 27:1193.CrossRefGoogle Scholar
  54. Williams, D.B., and Carter, C.B., 1996, Transmission Electron Microscopy-A Textbook for Materials Science; Plenum Press, New York.CrossRefGoogle Scholar
  55. Wright, S.I., and Adams, B.L., 1992, Automatic analysis of electron backscatter diffraction patterns, Metall. Trans. A, Phys. Metall. Mater. Sci. 23:759.CrossRefGoogle Scholar
  56. Yacobi, B.G., and Holt, D.B., 1990, Cathodoluminescence Microscopy of Inorganic Solids, Plenum Press, New York.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Jeffrey K. Farrer
    • 1
  • Joseph R. Michael
    • 2
  • C. Barry Carter
    • 1
  1. 1.Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA
  2. 2.Sandia National LaboratoryAlbuquerqueUSA

Personalised recommendations