Comparison of Ultrasound with other Types of Thyroid Imaging

  • H. Jack Baskin


Imaging of the thyroid gland began in 1951 when the first scanner was developed at the University of California, Los Angeles, by Cassen and Curtis (1). Thyroid scintigraphy using a radioactive isotope remained the primary method of imaging the thyroid for over a quarter of a century. It provided both an anatomical and functional image of the thyroid gland. The development of high-resolution realtime ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) now offers alternative means to visualize thyroid anatomy. While the recent development of single photon emission computed tomography (SPECT) and positron emission tomography (PET) have the potential to measure tissue function as well as anatomy, the use for that purpose remains experimental and is not widely available. Although ultrasound demonstrates only thyroid anatomy and not thyroid function, it has emerged as the most widely used method of thyroid imaging. This chapter will concentrate on comparing the advantages and disadvantages of ultrasound with isotope scans, CT, and MRI.


Thyroid Cancer Thyroid Nodule Thyroid Tissue Radioiodine Uptake Thyroid Scintigraphy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beierwaltes W.H. (1979) The history of the use of radioactive iodine. Seminars Nucl. Med. 9:151–155.CrossRefGoogle Scholar
  2. 2.
    Turner J.W., Spencer R.P. (1975) Thyroid carcinoma presenting as a pertechnetate “hot” nodule, but without 131I uptake: case report. J. Nucl. Med. 16:22–23.Google Scholar
  3. 3.
    Usher M.S., Arzoumanian A.Y. (1970) Thyroid scans made with pertechnetate and iodine may give inconsistent results. J. Nucl. Med. 12:136–137.Google Scholar
  4. 4.
    Steinberg M., Cavalieri R.R., Choy S.H. (1970) Uptake of technetium 99-pertechnetate in a primary thyroid carcinoma: need for caution in evaluating nodules. J. Clin. Endo. 31:81–84CrossRefGoogle Scholar
  5. 5.
    Shambaugh G.E., Quinn J.L., Oyasu R., Freinkel N. (1974) Disparate thyroid imaging; combined studies with sodium pertechnetate Tc 99m and radioactive iodine. JAMA 228:866–869.PubMedCrossRefGoogle Scholar
  6. 6.
    Erjavec M., Movrin T., Auersperg M., Golouh R. (1977) Comparative accumulation of 99mTc and 131I in thyroid nodules: case report. J. Nucl. Med. 18:346–347.PubMedGoogle Scholar
  7. 7.
    Dos Remedios L.V., Weber P.M., Jasko I.A. (1971) Thyroid scintiphotography in 1000 patients: rational use of 99mTc and 131I compounds. J. Nucl. Med. 12:673–677.PubMedGoogle Scholar
  8. 8.
    Baskin H.J. (1998) Follow-up of patients with thyroid cancer. Endocrine Practice 4:63–64.CrossRefGoogle Scholar
  9. 9.
    Baskin H.J. (1998) Thyroid cancer follow-up: editorial. Endocrine Practice 4:294.CrossRefGoogle Scholar
  10. 10.
    Burman K.D., Anderson J.H., Wartofsky L., Mong D.P., Jelinek J.J. (1990) Management of patients with thyroid carcinoma: application of thallium-201 scintigraphy and magnetic resonance imaging. J. Nucl. Med. 31:1958–1964.PubMedGoogle Scholar
  11. 11.
    Alam S., Kasagi K., Misaki T., Miyamoto S., Iwata M, lida Y., Konishi J. (1998) Diagnostic value of technetium-99m methoxyisobutyl isonitril (99mTc-MIBI) scintigraphy in detecting thyroid cancer metastases: a critical evaluation. Thyroid 8:1091–1100.PubMedCrossRefGoogle Scholar
  12. 12.
    Krenning E.P., Kwekkeboom D.J., Bakker W.H., Breemen W.A.P., Kooij P.P.M., Oei H.Y., van Hagen M., Postema P.T.E., deJong M., Reubi J.C., Visser T.J., Reijs A.E.M, Hofland L.J., Koper J.W., Lamberts S.W.J. (1993) Somatostatin receptor scintigraphy with [111 In-DTPA-d-Phe1] and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur. J. Nucl. Med. 20:716–731.PubMedCrossRefGoogle Scholar
  13. 13.
    Olsen J.O., Pozderac R.V., Hinkle G., Hill T., O’Dorisio T.M., Schirmer W.J., Ellison E.C., O’Dorisio M.S. (1995) Somatostatin receptor imaging of neuroendocrine tumors with indium-111 penetreotide (octreoscan). Seminars Nucl. Med. 25:251–261.CrossRefGoogle Scholar
  14. 14.
    Izenstark J.L., Horwitz N.H. (1968) The pyramidal lobe in thyroid imaging. J. Nucl. Med. 10:519–524.Google Scholar
  15. 15.
    Levy H.A., Sziklas J.J., Rosenberg R.J., Spencer R.P. (1987) Incidence of a pyramidal lobe on thyroid scans. Clin. Nucl. Med. 12:560–561.CrossRefGoogle Scholar
  16. 16.
    Siraj Q.H., Aleem N., Inam-ur-rehman A., Qaisar S., Ahmad M. (1989) The pyramidal lobe: a scintigraphic assessment. Nucl. Med. Communications 10:685–693.CrossRefGoogle Scholar
  17. 17.
    Hurley P.J., Strauss H.W., Pavoni P.(1989) , Langan J.K., Wagner H.N. (1971) The scintillation camera with pinhole collimator in thyroid imaging. Radiology 101:133–138.Google Scholar
  18. 18.
    Sostre S., Ashare A.B., Quinones J.D., Schieve J.B., Zimmerman J.M. (1978) Thyroid scintigraphy: pinhole images versus rectilinear scans. Radiology 129:759–762.PubMedGoogle Scholar
  19. 19.
    Karelitz J.R., Richards J.B. (1974) Necessity of oblique views in evaluating the functional status of a thyroid nodule. J. Nucl. Med. 15:782–785.PubMedGoogle Scholar
  20. 20.
    Smith M.L., Wraight E.P. (1989) Oblique views in thyroid imaging. Clin. Radiology 40:505–507.CrossRefGoogle Scholar
  21. 21.
    Van Herle A.J., Rich P., Ljung B.E., Ashcraft M.W., Soloman D.H., Keeler E.B. (1982) The thyroid nodule. Ann. Int. Med. 96:221–232.Google Scholar
  22. 22.
    Baskin H. J., Guarda L.A. (1987) Influence of needle biopsy on management of thyroid nodules: Reasons to expand its use. South. Med. J. 80:702–705.PubMedCrossRefGoogle Scholar
  23. 23.
    Ripley S.D., Freitas J.E., Nagle C.E. (1984) Is thyroid scintigraphy necessary before I-131 therapy for hyperthyroidism? concise communication. J. Nucl. Med. 25:664–667.PubMedGoogle Scholar
  24. 24.
    Park H., Perkins O.W., Edmondson J.W., Schnute R.B., Manatunga A. (1994) Influence of diagnostic radioiodines on the uptake of ablative dose of iodine-131. Thyroid 4:49–54.PubMedCrossRefGoogle Scholar
  25. 25.
    Balachandran S., Sayle B.A. (1981) Value of thyroid carcinoma imaging after therapeutic doses of radioiodine. Clin. Nucl. Med. 4:162–167.CrossRefGoogle Scholar
  26. 26.
    Noyek A.M., Freidberg J. (1981) Thyroglossal duct and ectopic thyroid disorders. Otolaryngology Clin. N. A. 14:167–201.Google Scholar
  27. 27.
    Rieser G.D., Ober K.P., Cowan R.J., Cordell A.R. Radioiodine imaging of struma cordis. (1988) Clin. Nucl. Med. 13:421–422.PubMedCrossRefGoogle Scholar
  28. 28.
    Baskin H.J. (1995) Thyroglobulin: a clinical review. Endocrine Practice 1:365–367.PubMedCrossRefGoogle Scholar
  29. 29.
    Baskin H.J. (1994) Effect of postoperative 131I treatment on thyroglobulin measurements in the follow-up of patients with thyroid cancer. Thyroid 4:239–242.PubMedCrossRefGoogle Scholar
  30. 30.
    Baskin H.J. (1997) Thyroid ultrasonography-a review. Endocrine Practice 3:153–157.PubMedCrossRefGoogle Scholar
  31. 31.
    Higgins C.B., McNamara M.T., Fisher M.R., Clark O.H. (1986) MR imaging of the thyroid. AJR 147:1255–1261.PubMedCrossRefGoogle Scholar
  32. 32.
    Toubert ME., Cyna-Gorse F., Zagdanski AM., Noel-Wekstein S., Cattan P., Billotey C., Sarfati E., Rain JD. (1999) Cervicomediastinal magnetic resonance imaging in persistent or recurrent papillary thyroid carcinoma: clinical use and limits. Thyroid 9:591–597.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • H. Jack Baskin
    • 1
  1. 1.Florida Thyroid and Endocrine ClinicOrlandoUSA

Personalised recommendations