Advertisement

On Generalized Lengths of Factorizations in Dedekind and Krull Domains

  • Scott T. Chapman
  • Michael Freeze
  • William W. Smith
Part of the Mathematics and Its Applications book series (MAIA, volume 520)

Abstract

The study of factorization in integral domains has played an important role in commutative algebra for many years. Much of this work has con­centrated on the study of unique factorization domains (UFDs). Beyond the realm of UFDs, there is a large class of integral domains for which each nonunit can be factored as a product of irreducibles, yet the factorization may not be unique. Classically, Dedekind domains are such domains. A Dedekind domain D is a UFD if and only if its ideal class group is trivial. Hence the size of the class group becomes a measure of how far the domain D is from having “unique factorization”. The concept of the class group and its relation to factorization properties extends also to the more general class of Krull domains. It is within the context of these domains that we consider in this paper general questions concerning the lengths of factorization in the non-UFD setting.

Keywords

Prime Ideal Class Group Integral Domain Factorization Property Ideal Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.D. Anderson, D.F. Anderson, S.T. Chapman and W.W. Smith, Rational elasticity of factorizations in Krull domains, Proc. Amer. Math. Soc. 117(1993), 37–43.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    D.D. Anderson, D.F. Anderson and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra 69 (1990), 1–19.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    D.D. Anderson, D.F. Anderson and M. Zafrullah, Factorization in integral domains, II, J. Algebra 152(1992), 78–93.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    D.F. Anderson, Elasticity of factorizations in integral domains: a survey, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker 189(1997), 1–30.Google Scholar
  5. [5]
    D.F. Anderson, P.J. Cahen, S.T. Chapman and W.W. Smith, Some factorization prop­erties of the ring of integer-valued polynomials, Lecture notes in Pure and Applied Mathematics, Marcel Dekker, volume 171(1995), chapter 10, 125–142.Google Scholar
  6. [6]
    D.F. Anderson, S.T. Chapman, F. Inman and W.W. Smith, Factorization in K[X 2 ,X 3 ] Arch. Math. 61(1993), 521–528.MathSciNetCrossRefGoogle Scholar
  7. [7]
    D.F. Anderson, S.T. Chapman and W.W. Smith, Some factorization properties of Krull domains with infinite cyclic divisor class group, J. Pure Appl. Algebra 96(1994), 97–112.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    D.F. Anderson, S.T. Chapman and W.W. Smith, On Krull half-factorial domains with infinite cyclic divisor class group, Houston J. Math. 20(1994), 561–570.MathSciNetMATHGoogle Scholar
  9. [9]
    D.F. Anderson and P. Pruis, Length functions on integral domains, Proc. Amer. Math. Soc. 113(1991), 933–937.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    L. Carlitz, A characterization of algebraic number fields with class number two, Proc. Amer. Math. Soc. 11(1960), 391–392.MathSciNetMATHGoogle Scholar
  11. [11]
    S. T. Chapman, On the Davenport constant, the cross number and their application in factorization theory, , Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, 189(1995), 167–190.Google Scholar
  12. [12]
    S. T. Chapman and J. Coykendall, Half-factorial Domains, A Survey, this volume.Google Scholar
  13. [13]
    S.T. Chapman, M. Freeze and W.W. Smith, Minimal zero-sequences and the strong Davenport constant, Discrete Math. 203(1999), 271–277.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    S.T. Chapman and A. Geroldinger, On cross numbers of minimal zero-sequences, Aus­tralasian J. Comb. 14(1996), 85–92.MathSciNetMATHGoogle Scholar
  15. [15]
    S.T. Chapman and A. Geroldinger, Krull domains and monoids, their sets of lengths and associated combinatorial problems, Lecture notes in Pure and Applied Mathemat­ics, Marcel-Dekker, 189(1997), 73–112.MathSciNetGoogle Scholar
  16. [16]
    S. T. Chapman and W.W. Smith, On a characterization of algebraic number fields with class number less than three, J. Algebra 135(1990), 381–387.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    S.T. Chapman and W.W. Smith, Factorization in Dedekind domains with finite class group, Israel J. Math 71(1990), 65–95.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    S. T. Chapman and W.W. Smith, On the k-HFD property in Dedekind domains with small class group, Mathematika 39(1992), 330–340.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    S.T. Chapman and W.W. Smith, On the HFD, CHFD and fc-HFD properties in Dedekind domains, Comm. Algebra 20(1992), 1955–1987.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    S.T. Chapman and W.W. Smith, An analysis using the Zaks-Skula constant of element factorizations in Dedekind domains, J. Algebra 159(1993), 176–190.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    S.T. Chapman and W.W. Smith, On the length of factorizations of elements in an algebraic number ring, J. Number Theory 43(1993), 24–30.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    S. T. Chapman and W.W. Smith, Finite cyclic groups and the fc-HFD property, Colloq. Math. 70(1996), 219–226.MathSciNetMATHGoogle Scholar
  23. [23]
    S.T. Chapman and W.W. Smith, Generalized sets of lengths, J. Algebra 200(1998), 449–471.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    S. T. Chapman and W.W. Smith, An arithmetical characterization of finite elementary 2-groups, Comm. Algebra, to appear.Google Scholar
  25. [25]
    L. Claborn, Every abelian group is a class group”, Pac. J. Math. 18(1966), 219–222.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    H. Cohn, A Second Course in Number Theory, J. Wiley & Sons (1962).Google Scholar
  27. [27]
    R. M. Fossum, The Divisor Class Group of a Krull Domain, Springer-Verlag, 1973.MATHCrossRefGoogle Scholar
  28. [28]
    M. Freeze, Lengths of Factorizations in Dedekind Domains, dissertation, The Univer­sity of North Carolina at Chapel Hill, 1999.Google Scholar
  29. [29]
    W. D. Gao and A. Geroldinger, Systems of sets of lengths, II, Abhandl. Math. Sem. Univ. Hamburg, to appear.Google Scholar
  30. [30]
    W. D. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups, Period. Math. Hungar., to appear.Google Scholar
  31. [31]
    A. Geroldinger, On non-unique factorizations in irreducible elements, II, Col. Math. Soc. Jânos Bolyai 51(1987), 723–752.MathSciNetGoogle Scholar
  32. [32]
    A. Geroldinger, Über nicht-eindeutige Zerlegunen in irreduzible Elements, Math. Z. 197(1988), 505–529.MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    A. Geroldinger, Systems von Langenmengen, Abh. Math. Sem. Univ. Hamburg 60(1990), 115–130.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    A. Geroldinger, A structure theorem for sets of lengths, Coll. Math. 78(1998), 225–259.MathSciNetMATHGoogle Scholar
  35. [35]
    A. Geroldinger and F. Halter-Koch, On the asymptotic behaviour of lengths of factor­izations, J. Pure Appl. Algebra 77(1992), 239–252.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.MATHGoogle Scholar
  37. [37]
    R. Gilmer, W. Heinzer and W.W. Smith, On the distribution of prime ideals within the ideal class group, Houston J. Math. 22(1996), 51–59.MathSciNetMATHGoogle Scholar
  38. [38]
    A. Grams, The distribution of prime ideals of a Dedekind domain, Bull. Austral. Math. Soc. 11(1974), 429–441.MathSciNetCrossRefGoogle Scholar
  39. [39]
    F. Halter-Koch, On the asymptotic behaviour of the number of distinct factorizations into irreducibles, Ark. Mat. 31(1993), 297–305.MathSciNetMATHCrossRefGoogle Scholar
  40. [40]
    F. Halter-Koch, Elasticity of factorizations in atomic monoids and integral domains, J. Theorie des Nombres Bordeaux 7(1995), 367–385.MathSciNetMATHCrossRefGoogle Scholar
  41. [41]
    F. Halter-Koch, Finitely generated monoids, finitely primary monoids, and factoriza­tion properties of integral domains, Factorization in Integral Domains, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker 189(1997), 31–72.MathSciNetGoogle Scholar
  42. [42]
    H. B. Mann, Addition theorems: the addition theorems of group theory and number theory, Interscience Publishers, J. Wiley & Sons, 1965.MATHGoogle Scholar
  43. [43]
    D. Marcus, Number Fields, Springer-Verlag, New York, 1977.MATHCrossRefGoogle Scholar
  44. [44]
    W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, PWN-Polish Scientific Publishers, Warsaw, 1974.MATHGoogle Scholar
  45. [45]
    W. Narkiewicz, Some unsolved problems, Bull. Soc. Math France 25(1971), 159–164.MathSciNetMATHGoogle Scholar
  46. [46]
    M. B. Nathanson, Additive Number Theory, Springer-Verlag Graduate Texts in Math­ematics 165(1996).CrossRefGoogle Scholar
  47. [47]
    J. Olson, A combinatorial problem on finite abelian groups I, J. Number Theory 1(1969), 8–11.MathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    J. Olson, A combinatorial problem on finite abelian groups II, J. Number Theory 1(1969), 195–199.MathSciNetMATHCrossRefGoogle Scholar
  49. [49]
    A. Zaks, Half-factorial domains, Bull. Amer. Math. Soc. 82(1976), 721–3.MathSciNetMATHCrossRefGoogle Scholar
  50. [50]
    A. Zaks, Half-factorial domains, Israel J. Math. 37(1980), 281–302.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Scott T. Chapman
    • 1
  • Michael Freeze
    • 2
  • William W. Smith
    • 2
  1. 1.Department of MathematicsTrinity UniversitySan AntonioUSA
  2. 2.Department of MathematicsUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations