Hemodynamic Evaluation of Congenital Heart Disease

  • John F. Keane
  • James E. Lock


A fundamental understanding of basic instrumentation and cardiovascular physiology is essential to competently assess the hemodynamic status of patients with congenital heart disease. The following is a very superficial view of these topics and readers should consult any of a number of more detailed texts 1–3. The contents of this chapter are presented in the following sequence.


Pulmonary Artery Mitral Valve Congenital Heart Disease Pulmonary Vein Atrial Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bairn, DS, Grossman, W. Cardiac Catheterization, Angiography and Intervention. Baltimore: Williams & Wilkins, 1996.Google Scholar
  2. 2.
    Zimmerman, H.A., Intravascular Catheterization. Springfield, IL: Charles C. Thomas, 1966.Google Scholar
  3. 3.
    Yang, S.S., Bentivoglio, L.G., Maranhao, V. and Goldberg, H. From Cardiac Catheterization to Hemodynamic Parameters. Philadelphia: F.A. Davis Co., 1978.Google Scholar
  4. 4.
    Hale, S. Statical Essays. Vegetable Staticks, Vol. 11 (3rd ed.) London: W. Inrys and R. Maonday, 1738.Google Scholar
  5. 5.
    Adams, F.H. and Lind, J. Physiologic studies on the cardiovascular status of normal newborn infants. Pediatrics 19:431–37, 1957.PubMedGoogle Scholar
  6. 6.
    Emmanoulides, G.C., Moss, A.J., Duffie, E.R., Jr. and Adams, F.H. Pulmonary arterial pressure changes in human newborn infants from birth to 3 days of age. J. Pediatr. 65:327–33, 1964.CrossRefGoogle Scholar
  7. 7.
    Sproul, A. and Simpson, E. Stroke volume and related hemodynamic data in normal children. Pediatr. 33:912–18,1964.Google Scholar
  8. 8.
    James, L.S. and Rowe, R.D. The pattern of response of pulmonary and systemic arterial pressures in newborn and older infants to short periods of hypoxia. J. Pediatr. 51:5–11, 1957.PubMedCrossRefGoogle Scholar
  9. 9.
    Lucas, R.V., Jr., St. Gerne, J.W. Jr., Anderson, R.C., Adams, P. and Ferguson, D.J. Maturation of the pulmonary vascular bed. Am. J. Dis. Child. 101:467–75, 1961.Google Scholar
  10. 10.
    Rowe, R.D., and James, L.S. The normal pulmonary arterial pressure during the first year of life. J. Pediatr. 51:1–4, 1957.PubMedCrossRefGoogle Scholar
  11. 11.
    Kjellberg, S.R., Mannheimer, E., Rudhe, U. and Jonsson, B. Diagnosis of Congenital Heart Disease. Chicago: Year Book Publishers, 1955.Google Scholar
  12. 12.
    Cummings, G.R., Hemodynamics of supine bicycle exercise in “normal” children. Am. Heart J. 93:617–22, 1977.CrossRefGoogle Scholar
  13. 13.
    Lock, J.E., Einzig, S.A., and Moller, J.H. Hemodynamic responses to exercise in normal children. Am. J. Cardiol. 41:1278–84, 1978.PubMedCrossRefGoogle Scholar
  14. 14.
    Paton, A., Reynolds, T.B. and Sherlock, S. Assessment of portal venous hypertension by catheterization of hepatic vein. Lancet 1:918–21, 1953.PubMedCrossRefGoogle Scholar
  15. 15.
    Wagenvoort, CA., Heath, D. and Edwards, J.E. The pathology of the Pulmonary Vasculature. Springfield IL: Charles C. Thomas, 3–35, 1964.Google Scholar
  16. 16.
    Connolly, D.C., Kirklin, J.W. and Wood, E.H. The relationship between pulmonary artery wedge pressure and left atrial pressure in man. Circ. Res. 2:434–440, 1954.PubMedCrossRefGoogle Scholar
  17. 17.
    Hellens, H.K., Haynes, F.W. and Dexter, L. Pulmonary “capillary” pressure in man. J. Appl. Physiol. 2:24–29, 1949.Google Scholar
  18. 18.
    Werko, L., Varnaskas, E., Eliasch, H., Lagerlof, H., Senning, A. and Thomasson, B. Further evidence that the pulmonary capillary venous pressure pulse in man reflects cyclic pressure changes in the left atrium. Circ. Res. 1:337–39, 1953.PubMedCrossRefGoogle Scholar
  19. 19.
    Hawker, R.E. and Celermajer, J.M. Comparison of pulmonary artery and pulmonary venous wedge pressure in congenital heart disease. Br. Heart J. 35: 386–91, 1973.PubMedCrossRefGoogle Scholar
  20. 20.
    Adatia, I., Moore, P., Jonas R.A., Colan, S.D., Lock, J.E., Keane, J.F. Clinical course and hemodynamic observations after supra-annular mitral valve replacement in infants and children. J.Am. Coll. Cardiol. 29:1089–94, 1997.PubMedCrossRefGoogle Scholar
  21. 21.
    Levin, A.R., Spach, M.S., Boineau, J.P., Canent, R.V., Jr., Capp, M.P. and Jewett, P.H. Atrial pressure-flow dynamics in atrial septal defects (secundum type). Circulation 37:476–88, 1968.PubMedCrossRefGoogle Scholar
  22. 22.
    Shabetai, R., Fowler, N.O., and Guntheroth, W.G. The hemodynamics of cardiac tamponade and constrictive pericarditis. Am. J. Cardiol. 26:480–89, 1970.PubMedCrossRefGoogle Scholar
  23. 23.
    Meany, E., Shabetai, R., Bhargave, V., Shearer, M., Weider, C, Mangiardi, L.M., Smalling, R. and Peterson, K. Cardiac amyloidosis, constrictive pericarditis, and restrictive cardiomyopathy. Am. J. Cardiol. 38: 547–66, 1976.CrossRefGoogle Scholar
  24. 24.
    Bush, CA., Stang, J.M., Wooley, C.F. and Kilman, J.W. Occult constrictive pericardial disease. Diagnosis by rapid volume expansion and correction by pericardiectomy. Circulation 56:924–30, 1977.PubMedCrossRefGoogle Scholar
  25. 25.
    Brockenbrough, E.C, Braunwald, E., Morrow, A.G.: A hemodynamic technique for the detection of hypertrophic subaortic stenosis. Circulation 23:189–94, 1961.CrossRefGoogle Scholar
  26. 26.
    Schoenfeld, M.H., Palacios, I.F., Hutter, A.M., Jacoby, S.S., and Block, P.C. Underestimation of prosthetic mitral valve area: Role of transseptal catheterization in avoiding unnecessary repeat mitral valve surgery. J. Am. Coll. Cardiol. 5:1387–92, 1985.PubMedCrossRefGoogle Scholar
  27. 27.
    Van Slyke, D.D. and Neill, J.M. Blood gasses I. J. Biol. Chem. 61:524–84, 1942.Google Scholar
  28. 28.
    Rudolph, A.M. Cardiac catheterization and angiography. In Congenital Diseases of the Heart. Chicago: Year Book, 1974.Google Scholar
  29. 29.
    Jarmakani, J.M. Catheterization and Angiocardiography, and Heart Disease in Infants, Children, and Adolescents. Baltimore: Williams & Wilkins, 1983.Google Scholar
  30. 30.
    Rowe, R.D. Cardiac catheterization. In Heart Disease in Infancy and Childhood. New York: Macmillan, 1978.Google Scholar
  31. 31.
    Rudolph, A.M., and Cayler, G.C. Cardiac catheterization in infants and children. Pediatr. Clin. North Am. 5:907–43, 1958.PubMedGoogle Scholar
  32. 32.
    Freed, M.D., Miettinen, O., Nadas, A.S. Oximetric detection of intracardiac left-to-right shunts. Br. Heart J. 42:690–94, 1979.PubMedCrossRefGoogle Scholar
  33. 33.
    Rudolph, A.M. Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ. Res. 57:811–21, 1985.PubMedCrossRefGoogle Scholar
  34. 34.
    Barratt-Boyes, B.G. and Wood, E.H. The oxygen saturation of blood in the venae cavae, right-heart chambers, and pulmonary vessels of healthy subjects. J. Lab. Clin. Med. 50:93–06, 1057.Google Scholar
  35. 35.
    Dexter, L., Haynes, F.W., Burwell, L.S., Eppinger, E.C, Sagerson, R.P. and Evans, J.M. Studies of congenital heart disease II. The pressure and oxygen content of blood in the right auricle, right ventricle, and pulmonary artery in control patients, with observations on the oxygen saturation and source of pulmonary “capillary” blood. J. Clin. Invest. 26:554–60, 1947.CrossRefGoogle Scholar
  36. 36.
    Fuhrman, B.P., Pokora, T.J., Bessinger, F.B., Jr. and Lucas, R.V., Jr. Hypercarbia in the infant with congenital cardiac disease. Pediatr. Cardiol. 2:245–50, 1982.PubMedCrossRefGoogle Scholar
  37. 37.
    Stewart, G.N. Researches on the circulation time and on the influences which affect it. IV: The output of the heart. J. Physiol. 22:159–83, 1987.Google Scholar
  38. 38.
    Kinsman, J.M., Moore, J.W., Hamilton, W.F. Studies on the circulation. I: Injection method. Physical and mathematical considerations. Am. J. Physiol. 89:322–39, 1929.Google Scholar
  39. 39.
    Hatle, L. and Angelson, B., Doppler Ultrasound in Cardiology. Philadelphia: Lea&Febiger, 1985.Google Scholar
  40. 40.
    Kolin, A. A new approach to electromagnetic blood flow determination by means of catheter in an external magnetic field. Proc. Soc. Nat. Acad. Sci. 65:521–27, 1970.CrossRefGoogle Scholar
  41. 41.
    Fick, A. Uber die Messung des Blutquantums in den Herzventrikeln. Sits der Physik-Med ges Wurtzberg, 1870, p. 16.Google Scholar
  42. 42.
    Van Slyke, D.D. and Neill, J.M. The determination of gases in blood and other solutions by vacuum extraction and manometric measurement. J. Biol. Chem. 61:523–84, 1924.Google Scholar
  43. 43.
    Scholander, P.F. Analyzer for accurate estimation of respiratory gases in one half cubic centimeter samples. J. Biol. Chem. 167: 235–50, 1947.PubMedGoogle Scholar
  44. 44.
    Lister, G., Hoffman, J.I.E. and Rudolph, A.M. Oxygen uptake in infants and children: A simple method for measurement. Pediatrics 53: 656–62, 1974.PubMedGoogle Scholar
  45. 45.
    Vaughan III V.C.: Growth and Development in Nelson, Textbook of Pediatrics: Philadelphia W.B. Saunders pg. 37, 1975.Google Scholar
  46. 46.
    LaFarge, CG. and Miettinen, O.S. The estimation of oxygen consumption. Cardiovasc. Res. 4:23–30, 1970.PubMedCrossRefGoogle Scholar
  47. 47.
    Kappagoda, CT., Greenwood, P., Macartney, F.J. and Linden, R.J. Oxygen consumption in children with congenital disease of the heart. Clin. Sei. Mol. Med. 45:107–14, 1973.Google Scholar
  48. 48.
    Baum, D., Brown, A.C., Church, S.C. Effect of sedation on oxygen consumption of children undergoing cardiac catheterization. Pediatrics 39: 891–95, 1967.PubMedGoogle Scholar
  49. 49.
    Wessel, H.U., Paul, M.H., James, G.W. and Grahn, A.R. Limitations of thermal dilution curves for cardiac output determinations. J. Appl. Physiol. 30:643–52, 1971.PubMedGoogle Scholar
  50. 50.
    Freed, M.D. and Keane, J.F. Cardiac output measured by thermodilution in infants and children. J. Pediatr. 92:39–42, 1978.PubMedCrossRefGoogle Scholar
  51. 51.
    Fox, I.J. and Wood, E.H. Indocyanine green: Physical and physiological properties. Proc. Mayo Clin. 35:732–44, 1960.Google Scholar
  52. 52.
    Vogel, J.H.K., Grover, R.F. and Blount, S.G. Jr. Detection of the small intracardiac shunt with the hydrogen electrode. A highly sensitive and simple technique. Am. Heart J. 64:13–21,1962.CrossRefGoogle Scholar
  53. 53.
    Amplatz, K., Jeffrey, R.E., Gobel, F.L., Wang, Y., Gathman, G.E., Moller, J.H. and Lucas, R.V. Jr. The freon test: A new sensitive test for the detection of small cardiac shunts. Circulation 39:551–56, 1969.PubMedCrossRefGoogle Scholar
  54. 54.
    Frommer, P.L., Pfaff, W.W. and Braunwald, E. The use of ascorbate dilution curves in cardiovascular diagnosis. Application of a technique for direct intravascular detection of indicator. Circulation 24: 1227–34, 1961.CrossRefGoogle Scholar
  55. 55.
    Bloomfield, D.A. Dye Curves. Baltimore: University Park Press, 1974.Google Scholar
  56. 56.
    Heymann, M.D., Payne, B.D., Hoffman, J.I.E. and Rudolph, A.M. Blood flow measurements with radionuclide-labelled particles. Prog. Cardiovasc. Dis. 20:55–79, 1977.PubMedCrossRefGoogle Scholar
  57. 57.
    Einzig, S., Nicoloff, D.M. and Lucas, R.V., Jr. Myocardial perfusion abnormalities in carbon monoxide poisoned dog. Can. J. Physiol. Pharmacol. 58:396–405, 1980.PubMedCrossRefGoogle Scholar
  58. 58.
    Carter, S.A., Bajec, S.F., Yannicelli, E. and Wood, E.H. Estimation of left to right shunts from arterial dilution curves. J. Lab. Clin. Med. 55:77–88, 1960.PubMedGoogle Scholar
  59. 59.
    Victoria, B.E. and Gessner, LH. A simplified method for quantitating left to right shunts from arterial dilution curves. Circulation 51:530–34, 1975.CrossRefGoogle Scholar
  60. 60.
    Thorburn, G.D. Estimates of cardiac output from forward part of indicator dilution curves. J. Appl. Physiol. 16:891–95, 1961.PubMedGoogle Scholar
  61. 61.
    Kulik, T.J. and Lock, J.E. The assessment of pulmonary vascular tone: A review of experimental methodologies. Pediatr. Pharmacol. 4:73–83,1984.Google Scholar
  62. 62.
    Gorlin, R. and Gorlin, G. Hydraulic formula for calculation of area of stenotic mitral valves, other valves, and central circulatory shunts. Am. Heart J. 41:1–29, 1951.PubMedCrossRefGoogle Scholar
  63. 63.
    Bache, R.J., Wang, Y. and Jorgeson, C.R. Hemodynamic effects of exercise in isolated valvular aortic stenosis. Circulation 44: 1003–13, 1971.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • John F. Keane
  • James E. Lock

There are no affiliations available

Personalised recommendations