Skip to main content

Towards Implementations of Successive Convex Relaxation Methods for Nonconvex Quadratic Optimization Problems

  • Chapter
Approximation and Complexity in Numerical Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 42))

Abstract

Recently Kojima and Tunçel proposed new successive convex relaxation methods and their localized-discretized variants for general nonconvex quadratic optimization problems. Although an upper bound of the optimal objective function value within a previously given precision can be found theoretically by solving a finite number of linear programs, several important implementation issues remain unsolved. In this paper, we discuss those issues, present practically implementable algorithms and report numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Alizadeh (1995), “Interior point methods in semidefinite programming with applications to combinatorial optimization,” SIAM Journal on Optimization, 5, 13–51.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. A. AL-Khayyal and J. E. Falk (1983), “Jointly constrained biconvex programming”, Mathematics of Operations Research, 8, 273–286.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Balas, S. Ceria and G. Cornuéjols (1993), “A lift-and-project cutting plane algorithm for mixed 0–1 programs,” Mathematical Programming, 58, 295–323.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. W. Cottle, J. S. Pang and R. E. Stone (1992), The Linear Complementarity Problem, Academic Press, New York.

    MATH  Google Scholar 

  5. T. G.W. Epperly and R.E. Swaney (1996), “Branch and bound for global NLP: Iterative LP algorithm and results”, in I. E. Grossmann ed., Global Optimization in Engineering Design, Kluwer, Dordrecht.

    Google Scholar 

  6. J. E. Falk and S. W. Palocsay (1992), “Optimizing the sum of linear fractional functions”, in C. A. Floudas eds., Collection: Recent Advances in Global Optimization, Kluwer, Dordrecht, 221–258.

    Google Scholar 

  7. C. A. Floudas and P. M. Pardalos (1990), A Collection of Test Problems for Constrained Global Optimization Algorithms, Lecture Notes in Computing Science, Springer, New York.

    Google Scholar 

  8. T. Fujie and M. Kojima (1997), “Semidefinite relaxation for nonconvex programs,” Journal of Global Optimization, 10, 367–380.

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Fujisawa, M. Kojima and K. Nakata (1995), “SDPA (SemiDefinite Programming Algorithm) - User’s manual - version 4.10,” Technical Report B-308, Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology, Meguro, Tokyo, Japan, revised May 1998, available at http://www.is.titech.ac.jp/pub/OpRes/software/SDPA.

    Google Scholar 

  10. M. X. Goemans (1997), “Semidefinite programming in combinatorial optimization,” Mathematical Programming, 79, 143–161.

    MathSciNet  MATH  Google Scholar 

  11. K. C. Goh, M. G. Safonov and G. P. Papavassilopoulos (1995), “Global optimization for the biaffine matrix inequality problem,” Journal of Global Optimization, 7, 365–380.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. E. Grossmann and A. Kravanja (1997), “Mixed-integer nonlinear programming: A survey of algorithms and applications,” in L. T. Biegler eds., Large-Scale Optimization with Applications, Part II: Design and Control, Springer-Verlag, 73–100.

    Google Scholar 

  13. M. Kojima and L. Tunçel (1998), “Cones of matrices and successive convex relaxations of nonconvex sets,” Technical Report B-338, Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology, Meguro, Tokyo, Japan. Also issued as CORR 98–6, Dept. of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, revised June 1999, to appear in SIAM Journal on Optimization.

    Google Scholar 

  14. M. Kojima and L. Tunçel (1998), “Discretization and Localization in Successive Convex Relaxation Methods for Nonconvex Quadratic Optimization Problems,” Technical Report B-341, Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology, Meguro, Tokyo, Japan, revised July 1999.

    Google Scholar 

  15. L. Lovâsz and A. Schrijver (1991), “Cones of matrices and set functions and 0–1 optimization,” SIAM Journal on Optimization, 1, 166–190.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Mesbahi and G. P. Papavassilopoulos (1997), “A cone programming approach to the bilinear matrix inequality problem and its geometry,” Mathematical Programming, 77, 247–272.

    MathSciNet  MATH  Google Scholar 

  17. Yu. E. Nesterov (1997), “Semidefinite relaxation and nonconvex quadratic optimization,” CORE Discussion Paper, #9744.

    Google Scholar 

  18. Yu. E. Nesterov and A. S. Nemirovskii (1994), Interior-Point Polynomial Algorithms in Convex Programming, SIAM, Philadelphia.

    Book  MATH  Google Scholar 

  19. G. Pataki and L. Tunçel (1997), “On the generic properties of convex optimization problems in conic form,” Research Report 97–16, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada.

    Google Scholar 

  20. S. Poljak, F. Rendl and H. Wolkowicz (1995), “A recipe for semidefinite relaxation for (0,1)-quadratic programming,” Journal of Global Optimization, 7, 51–73.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. V. Ramana (1993), An algorithmic analysis of multiquadratic and semidefinite programming problems, PhD thesis, Johns Hopkins University, Baltimore, MD.

    Google Scholar 

  22. N. V. Sahinidis (1998), “BARON: Branch and reduce optimization navigator, User’s manual ver. 3.0”, Department of Chemical Engineering, University of Illinois at Urbana-Champaign.

    Google Scholar 

  23. N. V Sahinidis and I.E. Grossmann (1991), “Reformulation of multiperiod MILP models for planning and scheduling of chemical processes”, Computers e4 Chemical Engineering, 15, 255–272.

    Article  Google Scholar 

  24. S. Schaible (1995), “Fractional programming” in R. Horst and P. Pardalos eds., Handbook of Global Optimization, Kluwer, Dordrecht, 495–608.

    Google Scholar 

  25. H. D. Sherali and A. Alameddine (1992), “A new reformulation-linearization technique for bilinear programming problems,” Journal of Global Optimization, 2, 379–410.

    Article  MathSciNet  MATH  Google Scholar 

  26. H. D. Sherali and C. H. Tuncbilek (1995), “A reformulation-convexification approach for solving nonconvex quadratic programming problems,” Journal of Global Optimization, 7, 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  27. N. Z. Shor (1990), “Dual quadratic estimates in polynomial and boolean programming,” Annals of Operations Research, 25, 163–168.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. E. Swaney (1990), “Global solution of algebraic nonlinear programs,” AIChE Annual Meeting, Chicago.

    Google Scholar 

  29. V. Visweswaran and C. A. Floudas (1990), “A global optimization (GOP) for certain classes of nonconvex NLPs — II. Application of theory and test problems,” Computers and Chemical Engineering, 14, 1419–1434.

    Article  Google Scholar 

  30. V. Visweswaran, C. A. Floudas, M. G. Ierapetritou and E. N. Pistikopoulos (1996), “A decomposition-based global optimization approach for solving bilevel linear and quadratic programs,” in C. A. Floudas eds., State of the Art in Global Optimization, Kluwer, Dordrecht, 139–162.

    Chapter  Google Scholar 

  31. Y. Ye (1997), “Approximating quadratic programming with quadratic constraints,” Working paper, Dept. of Management Sciences, The University of Iowa.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Takeda, A., Dai, Y., Fukuda, M., Kojima, M. (2000). Towards Implementations of Successive Convex Relaxation Methods for Nonconvex Quadratic Optimization Problems. In: Pardalos, P.M. (eds) Approximation and Complexity in Numerical Optimization. Nonconvex Optimization and Its Applications, vol 42. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3145-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3145-3_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4829-8

  • Online ISBN: 978-1-4757-3145-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics