Complementarity Problems as Mathematical Models

  • George Isac
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 41)


The complementarity theory has many applications, since the concept of complementarity is synonymous with the concept of equilibrium not only in physical sense but also in economical sense.


Variational Inequality Complementarity Problem Linear Complementarity Problem Journal Bearing Nonlinear Complementarity Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANITESCU, M., CREMER, J. F. and POTRA, F. A. 1. On the existence of solutions to complementarity formulations of contact problems with frictions. In: Complementarity and Variational Problems. State of the Art ((Eds.), M. C. Ferris and J. S. Pang.), Siam (1997), 12–21.Google Scholar
  2. AASHTIANI, H. Z. and MAGNANTI, T. L. 1. Equilibria on a congested transportation network. Siam J. Alg. Disc. Meth. 2 Nr. 3 (1981), 213–226.MathSciNetMATHCrossRefGoogle Scholar
  3. BAIOCCHI, C. 1. Sur un problème a frontière libre traduisant le filtrage de liquide a travers des milieux poreaux. C. R. Acad. Sci. Paris A 273 (1971), 1215–1217.MathSciNetMATHGoogle Scholar
  4. BELLMAN, R. 1. On a routing problem. Quart. Appl. Math., 16 (1958), 87.MathSciNetMATHGoogle Scholar
  5. BENSOUSSAN, A. 1. Variational inequalities and optimal stoping time problems. In: Calculus of Variations and Control Theory ((Ed.) D. L. Russel), Academic Press (1976), 219–244.Google Scholar
  6. BENSOUSSAN, A., GOURSET, M. and LIONS, J. L. 1. Contrôle impulsionnel et inequations quasi-variationnelles stationnaires. C. R. Acad. Sci. Paris 276 (1973), A. 1279–1284.MATHGoogle Scholar
  7. BENSOUSSAN, A. and LIONS, J. L. 1. Nouvelle formulation des problèmes de contrôle inplulsionnel et applications. C. R. Acad. Sci. Paris, 276 (1973), A, 1189–1192.MathSciNetMATHGoogle Scholar
  8. BENSOUSSAN, A. and LIONS, J. L. 2. Problèmes de temps d’arrêt optimal et inèquations variationnelles paraboliques. Applicable Anal. (1973), 267–294.Google Scholar
  9. BENSOUSSAN, A. and LIONS, J. L. 3. Nouvelles méthodes en contrôle impulsionnel. Applied Math. Opt. 1 (1974), 289–312.MathSciNetCrossRefGoogle Scholar
  10. BENVENISTE, M. 1. A mathematical model of a monopolistic world oil market. Ph. D. Thesis, The John Hopkins University, (1977).Google Scholar
  11. BERSHCHANSKII, YA. M. and MEEROV, M. V. 1. The complementarity problem: theory and method of solution. Automat. Remote Control, 44 Nr. 6 (1983), 687–710.MathSciNetGoogle Scholar
  12. BERSHCHANSKII, YA. M., MEEROV, M. V. and LITVAK, M. L. 1. Solution of a class of optimal control problems for distributed multivariable systems. I, II, Automat. i. Teleme. 4 (1976), 5–13,Google Scholar
  13. BERSHCHANSKII, YA. M., MEEROV, M. V. and LITVAK, M. L. 1. Solution of a class of optimal control problems for distributed multivariable systems. I, II, Automat. i. Teleme. 5 (1976), 5–15.Google Scholar
  14. BJöRKMAN, G. 1. The solution of large displacement frictionless contact problems using a sequence of linear complementarity problems. International J. Num. Meth. in Engineering 31 (1991), 1553–1566.MATHCrossRefGoogle Scholar
  15. BOD, P. 1. On closed sets having a least element. In: Optimizatio and Operations Research, ((Eds.), W. Oettli and K. Ritter), Lecture Notes in Economics and Math. Systems, SpringerVerlag, Nr. 117 (1976), 23–34.CrossRefGoogle Scholar
  16. BOD, P. 2. Sur un modèle non-linéaire de rapports interindustriels. Rairo Recherche Opér., 11 Nr. 4 (1977), 405–415MathSciNetMATHGoogle Scholar
  17. CARBONE, A. and ISAC, G. 1. The generalized order complementarity problem. Applications to Economics. An existence result. Nonlinear Studies , 5 Nr. 2 (1998), 139–151.MathSciNetMATHGoogle Scholar
  18. CIMETIèRE, A. 1. Méthode de Galerkin pour le flambement des plaques. C. R. Acad. Sci. Paris, 284 (1977), A. 1307–1310.MATHGoogle Scholar
  19. CIMETIèRE, A. 2. Flambement unilatéral d’une plaque reposant sans frottemet sur un support élastique tridimensionnel. C. R. Acad. Sci. Paris 290 (1980), A, 337–340.Google Scholar
  20. CIMETIèRE, A. 3. Un problème de flambement unilateral en théorie des plaques. J. de Mécanique 19 Nr. 1. (1980), 183–202.MATHGoogle Scholar
  21. CIMETIèRE, A. 4. Méthode de Liapounov-Schmidt et branche de bifurcation pour une classe d’inequations variatonnelles. C. R. Acad. Sci. Paris 300, Série 1. Nr. 15, (1985), 565–568.Google Scholar
  22. CIMMATI, G. 1. On a problem of the theory of lubrication governed by a variational inequality. Appl. Math. Optim. Nr. 3 (1977), 227–243.CrossRefGoogle Scholar
  23. COOKE, K. L. and HALSEY, E. 1. The shortest route through a network with time-dependent internodal transit times. J. Math. Anal. Appl. 14 (1966), 493.MathSciNetMATHCrossRefGoogle Scholar
  24. COTTLE, R. W. 1. Note on a fundametal theorem in quadratic programming. Siam J. Appl. Math. 12 (1964), 663–665.MathSciNetMATHCrossRefGoogle Scholar
  25. COTTLE, R. W. 2. Nonlinear programs with positively bounded Jacobians. Siam J. Appl. Math. 14, Nr. 1 (1966), 147–158.MathSciNetMATHCrossRefGoogle Scholar
  26. COTTLE, R. W. 3. On a problem in linear inequalities. J. London Math. Soc. 43 (1968), 378–384.MathSciNetMATHCrossRefGoogle Scholar
  27. COTTLE, R. W. 4. Monotone solutions of the parametric linear complementarity problem. Math. Programming 3 (1972), 210–224.MathSciNetMATHCrossRefGoogle Scholar
  28. COTTLE, R. W. 5. Solution rays for a class of complementarity problemMms. Math. Programming Study, 1 (1974), 59–70.MathSciNetCrossRefGoogle Scholar
  29. COTTLE, R. W. 6. On Minkowski matrices and the linear complementarity problem. In: Optimization, ((Eds. R. Bulirsch’ W. Oettli and J. Stoer), Lecture Notes in Math. Nr. 477, Springer-Verlag (1975). 18–26.Google Scholar
  30. COTTLE, R. W. 7. Complementarity and variational problems. Symposia Math. 19 (1976), 177–208.MathSciNetGoogle Scholar
  31. COTTLE, R. W. 8. Computational experience with large-scale linear complementarity problems. In: Fixed Points Algorithm and Applications, (Ed. S. Kamardian), Academic Press (1977), 281–313.Google Scholar
  32. COTTLE, R. W. 9. Numerical methods for complementarity problems in engineering and applied Science. In : Computing Methods in Applied Sciences and Engineering, ((Eds.) R. Glowinski and J. L. Lions), Lecture Notes in Math. Nr. 704, Springer-Verlag (1979), 37–52.Google Scholar
  33. COTTLE, R. W. 10. Some recent developments in linear complementarity theory. In: Variational Inequalities and Complementarity Problems. Theory and Applications. ((Eds.) R. W. Cottle, F. Giannessi and J. L. Lions), John Wiley & Sons (1980), 97–104.Google Scholar
  34. COTTLE, R. W. 11. Solution on problem 72–7. A parametric linear complementarity problem by G. Maier. Siam Rev. 15, Nr. 2 (1973), 381–384.MathSciNetCrossRefGoogle Scholar
  35. COTTLE, R. W. and DANTZIG, G. B. 1. Complementarity pivot theory of mathematical programmming. Linear Algebra and Appl. 1 (1968), 103–125MathSciNetMATHCrossRefGoogle Scholar
  36. COTTLE, R. W. and DANTZIG, G. B. 2. A generalization of the linear complementarity problem. J. Combinatorial Theory 8 (1970), 79–90.MathSciNetMATHCrossRefGoogle Scholar
  37. COTTLE, R. W., PANG, J. S. and STONE, R. E. 1. The Linear Complementarity problem. Academic Press Inc. (1992).MATHGoogle Scholar
  38. CRYER, C. W. 1. Sor for solving linear complementarity problem arising from free boundary problems. Free Boudary Problems, Vol. I & Ii Proceedings of a Seminar, Pavia (1979), Instituto Nationale di Alta Matematica, Francesco Severi, Rome, (1980).Google Scholar
  39. CRYER, C. W. 2. The method of Christopherson for solving free boudary problems for infinite journal bearing by means offinite differences. Math. Comput. 25 Nr. 115, (1971), 435–443.MathSciNetMATHCrossRefGoogle Scholar
  40. CRYER, C. W. and DEMPSTER, M. A. H. 1. Equivalence of linear complementarity problems and linear programs in vector lattice Hilbert spaces. Siam J. Control Optim., 18 Nr. 1 (1980), 76–90.MathSciNetMATHCrossRefGoogle Scholar
  41. CRYER, C. W., FLANDERS, P. M., HUNT, D. J., REDDAWAY, S. F. and STRANSBURY, J. 1. The solution of linear complementarity problems on a array processor. Tech. Summary Rept., Nr. 2170, Mathematics Research Center. University of Wisconsin, Madison (1981)Google Scholar
  42. DAFERMOS, S. and NAGURNEY, A. 1. Oligopolistic and competitive behavior spatially separated markets. (Preprint, Lefschetz Center for Dynamical Systems, Brown University Providence, (1985).Google Scholar
  43. DE MOOR, B., VANDENBERGHE, L. and VANDEWALLE, J. 1. The generalized linear complementarity problem and an algorithm to find all its solutions. Math. Programming 57 (1992), 415–426.MathSciNetMATHCrossRefGoogle Scholar
  44. DIRKSE, S. P. and FERRIS, M. C. 1. Mcplib: A collection of nonlinear mixed conplementarity problems. Opt. Meth. Software 5 (1995), 319–345.CrossRefGoogle Scholar
  45. DORN, W. S. 1. Self dual quadratic programs. Siam J. Appl. Math. 9 (1961), 51–54.MathSciNetMATHCrossRefGoogle Scholar
  46. DU VAL, P. 1. The unloading problem for plane curves. Amer. J. Math. 62 (1940), 307–311.MathSciNetMATHCrossRefGoogle Scholar
  47. EAVES, B. C. 1. The Linear Complementarity Problem in Mathematical Programming. Ph. D. Thesis, Department of Operations Research, Stanford University, Stanford, Ca (1969).Google Scholar
  48. EAVES, B. C. 2. On the basic theorem ofcomplementarity. Math. Programming, 1 (1971), 68–75.MathSciNetMATHCrossRefGoogle Scholar
  49. EAVES, B. C. 3. The linear complementarity problem. Management Sci., 17 Nr. 9 (1971), 612–634.MathSciNetMATHCrossRefGoogle Scholar
  50. EAVES, B. C. 4. Computing stationary points. Math. Programming Study 7 (1978), 1–14.MathSciNetMATHCrossRefGoogle Scholar
  51. EAVES, B. C. 5. A locally quadratically convergent algorithm for computing stationary points. Tech. Rept. Department of Oper. Res., Stanford University, Stanford, Ca (1978).Google Scholar
  52. EAVES, B. C. 6. Where solving for sationary points by Lcp S is mixing Newton iterates. In: Homotopy Methods and Global Convergence, ((Eds.), B. C. Eaves, F. J. Gould, H. O. Peitgen and M. J. Todd), Plenum Press (1983), 63–77.CrossRefGoogle Scholar
  53. EAVES, B. C. 7. On quadratic programming. Management Sci., 17 (1971), 698–711.MATHCrossRefGoogle Scholar
  54. Eaves, B. C. 8. More with the Lemke complementarity algorithm. Math. Programming, 15 Nr. 2 (1978), 214–219.MathSciNetGoogle Scholar
  55. EBIEFUNG, A. A. and KOSTREVA, M. M. 1. The generalized Leontief input-output model and its application to the choice of new technology. Annals Oper. Research, 44 (1993), 161–172.MathSciNetMATHCrossRefGoogle Scholar
  56. FERRIS, M. C. and PANG, J. S. 1. Engineering and economic applications of complementarity problems. Siam Rev. 39, Nr. 4 (1997), 669–713.MathSciNetMATHCrossRefGoogle Scholar
  57. FRIDMAN, V. M. and CHERNINA, V. S. 1. An iteration process for the solution of the finite-dimensional contact problem. Zh. Vychisl. Mat. Fiz. 7 (1967), 160–163.MATHGoogle Scholar
  58. FRIESZ, T. L., TOBIN, R. L., SMITH, T. E and HARKER, P. T. 1. A nolinear complementarity formulation and solution procedure for the general derived demand network equilibrium problem. J. Region Sci., 23 (1983), 337–359.CrossRefGoogle Scholar
  59. GARCIA, C. B. 1. The Complementarity Problem and its Applications. Ph. D. Thesis, Rensselaer Polytechnic Institute, Troy, N. Y. (1973).Google Scholar
  60. GARCIA, C. B. 2. Some classes of matrices in linear complementarity theory. Math. Programming 5 (1974), 299–310.CrossRefGoogle Scholar
  61. GARCIA, C. B. 3. A note on a complementary variant of Lemke’s mehod. Math. Programmig, 10 Nr. 1 (1976), 134–136.MATHCrossRefGoogle Scholar
  62. GARCIA, C. B. 4. A note on a complementarity problem. J. Opt. Theory Appl., 21 Nr. 4 (1977), 529–530.MATHCrossRefGoogle Scholar
  63. GLASSEY, C. R. 1. A quadratic network optimization model for equilibrium simple commodity trade flow. Math. Programming, 14 (1978), 98–107.MathSciNetMATHCrossRefGoogle Scholar
  64. GOULD, F. J. and TOLLE, J. W. 1. An unifed approach to complementarity in optimization. Discrete Math. 7 (1974), 225–271.MathSciNetMATHCrossRefGoogle Scholar
  65. HABETLER, G. J. and HADDAD, C. N. 1. Global stability of a two—species piecewise linear Volterra ecosystem. Appl. Math, Lett. 5, Nr. 6, (1992), 25–28.MathSciNetMATHCrossRefGoogle Scholar
  66. HABETLER, G. J. and PRICE, A. L. 1. Existence theory for generalized nonlinear complementarity problems. J. Optim. Theory Appl. 7 (1971), 223–239.MathSciNetMATHCrossRefGoogle Scholar
  67. HABETLER, G. J. and PRICE, A. L. 2. An iterative method for generalized nonlinear complementarity problems. J. Optim. Theory Appl. 11 (1973), 36–48.MathSciNetMATHCrossRefGoogle Scholar
  68. HANSEN, T. and MANNE, A. S. 1. Equilibrium and linear complementarity an economy with institutional constraints prices. In: Equilibrium and Disequilibrium in Economic Theory, ((Ed.) G. Schwödiauer), D. Reidel Publishing Company, Dordrecht, (1977), 223–237.Google Scholar
  69. HARRISON, J. M. and REIMAN, M. I. 1. Reflected Brownian motion on an orthant. Ann. Prob. 9 (1981), 302.MathSciNetMATHCrossRefGoogle Scholar
  70. HARKER, P. T. and PANG, J. S. 1. Existence of optimal solutions to mathematical programs with equilibrium constraints. Oper. Res. Lett. 7 (1988), 61–64.MathSciNetMATHCrossRefGoogle Scholar
  71. IBARAKI, T. 1. Complementarity Programming. Operation Res. 19 (1971), 1523–1528.MATHCrossRefGoogle Scholar
  72. INGLETON, A. W. 1. A problem in linear inequalities. Proc. London Math. Soc., 16 (1966), 519–536.MathSciNetMATHCrossRefGoogle Scholar
  73. INGLETON, A. W. 2. Linear complementarity problem. J. London Math. Soc. 2 (1970), 330–336.MathSciNetMATHCrossRefGoogle Scholar
  74. ISAC, G. 1. Nonlinear complementarity problem and Galerkin method. J. Math. Anal. Appl., 108 Nr. 2 (1985), 563–574MathSciNetCrossRefGoogle Scholar
  75. ISAC, G. 2. Problème de Complèmentarité (En Dimension Infinie), Mini-cours. Publications du Départ. Math. Inf., Université de Limoges. France (1985).Google Scholar
  76. ISAC, G. 3. Iterative methods for the general order complentatity problem. In : Approximation Theory, Spline Functions and Applicatios, ((Ed.) S. P Singh), Kluwer Academic Publishers (1992), 365–380.CrossRefGoogle Scholar
  77. ISAC, G. 4. The fold complementarity problem and the order complementarity problem. Topological Meth. Nonlinear Anal. 8 (1996), 343–358.MathSciNetMATHGoogle Scholar
  78. ISAC, G. and GOELEVEN, D. 1. The implicit general order complementarity problem, models and iterative methods. Annals of Oper. Res. 44 (1993), 63–92.MathSciNetMATHCrossRefGoogle Scholar
  79. ISAC, G. and KOSTREVA, M. M. 1. The implicit generalized order complementarity problem and Leontiefs input-output model. Appl. Mathamtical 24 Nr. 2 (1996). 113 – 125.MathSciNetMATHGoogle Scholar
  80. ISAC, G. and KOSTREVA, M. M. 2. The generalized order complementarity problem. J. Optim. Theory Appl. 71 Nr. 3 (1991), 517–534.MathSciNetMATHCrossRefGoogle Scholar
  81. ISAC, G. and THERA, M. 1. Complementarity problem and the existence of the post-critical equilibrium state of a thin elastic plate. J. Opt. Theory Appl. 58 Nr. 2 (1988), 241–257.MathSciNetMATHCrossRefGoogle Scholar
  82. ISAC, G. and THERA, M. 2. A variatonal principle. Application to the nonlinear complementarity problem. In: Nonlinear and Convex Analysis (Proceedings in honor of Ky Fan ((Eds.) B. L. Lin and S. Simons), Marcel Dekker (1987), 127–145.Google Scholar
  83. JONES, PH. C., SAIGAL, R. and SCHNEIDER, M. H. 1. A variable dimension homotopy on Network for computing linear spatial equilibria. Preprint, Dept. of Industrial Engineering and Management Sciences, Technological Inst. Northwestern University, Evanston, Illinois, (1984).Google Scholar
  84. JUDICE, J. J. and MITRA, G. 1. Reformulations ofMathematical Programming Problems as Linear Complementarity Problems and an investigation of their solution methods. Preprint, Dept. de Matem. Universidade de Coimbra Coimbra, Portugal (1985).Google Scholar
  85. KANEKO, I. 1. The nonlinear complentatity problem. Term. Paper Or340c. Dept. Oper. Research, Stanford University, Stanford, C A(1973).Google Scholar
  86. KANEKO, I. 2. The parametric linear compleMnentarity problem in the De Donato Maier analysis of reinforce concrete beams. Tech. Rept. Sol 75–13, Dept. Oper. Research, Stanford University, Standord Ca (1975).Google Scholar
  87. KANEKO, I. 3. Isotone solutions of parametreic linear complementarity problems. Math. Programming 12 (1977), 48–59.MathSciNetMATHCrossRefGoogle Scholar
  88. KANEKO, I. 4. A linear complementarity problem with an n by 2n P-matrix. Math. Programming Study 7 (1978), 120–141.MATHCrossRefGoogle Scholar
  89. KANEKO, I. 5. The number of solutions of a class of linear complementarity problems. Math. Programming 17 (1979) 104–105.MathSciNetMATHCrossRefGoogle Scholar
  90. KANEKO, I. 6. A mathematical programming method for the inelastic analysis of reinforced concrete frams. Internat. J. Numer. Methods Engrg. 11 (1977), 137–154.CrossRefGoogle Scholar
  91. KANEKO, I. 7. Linear complementarity problems and characterization of Minkowski matrices. Linear Algebra Appl. 20 (1978), 111–129.MATHCrossRefGoogle Scholar
  92. KANEKO, I. 8. A mazimization problem related to parametreic linear complementarity. Math. Programming 15 Nr.2 (1978). 146–154.MathSciNetMATHCrossRefGoogle Scholar
  93. KANEKO, I. 9. A maximization problem related to parametric linear complementarity. Siam J. Global Optim. 16 Nr. 1. (1978), 41–55.MATHCrossRefGoogle Scholar
  94. KANEKO, I. 10. Complete solutions for a class of elastic-plastic structures. Comput. Methods Appl. Mech. Engrg., 21 (1980), 193–209.MATHGoogle Scholar
  95. KANEKO, I. 11. On some recent engineering applications of complementarity problems. Math. Programming Study, 17 (1982) 111–125.MATHCrossRefGoogle Scholar
  96. KANEKO, I. 12. Piecewise linear elastic-plastic analysis. Internat. J. Numer. Methods Engrg., 14 (1979), 757–767.MATHCrossRefGoogle Scholar
  97. KARAMARDIAN, S. 1. The nonlinear complementarity problem with applications. J. Optim. Theory Appl. 4(1969) (I), 87–98; (Ii), 167–181.MathSciNetMATHCrossRefGoogle Scholar
  98. KARAMARDIAN, S. 2. Complementarity problems over cones with monotone and pseudomonotone maps. J. Optim. Theory Appl. 18 (1976), 445–454.MathSciNetMATHCrossRefGoogle Scholar
  99. KARAMARDIAN, S. 3. Generalized complementarity problem. J. Optim. Theory Appl. 8 (1971), 161–168.MathSciNetMATHCrossRefGoogle Scholar
  100. KARAMARDIAN, S. 4. The complementarity problem. Math. Programming 2 (1972), 107–129.MathSciNetMATHCrossRefGoogle Scholar
  101. KLARBRING, A. 1. Mathematical programming in contact problems. In: Computational Methods in Contact Mechanics (Eds. M. H. Aliabadi and C. A. Brebbia), Elsevier Applies Science, London, New York (1993), 233–264.Google Scholar
  102. KLARBRING, A. 2. Steady Sliding and linear complemnentarity. In: Complementarity and Variational Problems. State of the Art (Eds. M. C. Ferris and J. S. Pang), Siam (1997), 12–21.Google Scholar
  103. KLARBRING, A. and JOHANSON, L. 1. The rigid punch problem with friction using variational inequalities and linear complenentarity. Mech. Struct. and Mach. 20 (3) (1992), 293–319.CrossRefGoogle Scholar
  104. KLARBRING, A. and PANG, J. S. 1. Existence of solutions to discrete semicoercive frictional contact problems. Preprint, Department of Mechanical Engineering, Linköping University, Sweden (1996).Google Scholar
  105. KOEHLER, G. J. 1. A complementarity approach for solving Leontief substitution systems and (generalized) Markov decision processes. Rairo Recherch Oper. 13 Nr. 1 (1979), 75–80.MathSciNetMATHGoogle Scholar
  106. KOJIMA, M. 1. Computational methods for solving the nonlinear complementarity problem. Keio Engineering Repts., Vol. 27, Nr. 1, Department of Administrative Engineering Keio Univeraity, Yokohama, Japan (1974), 1–41.Google Scholar
  107. KOJIMA, M. 2. A unification of the existece theorem of the nonlinear complementarity problem. Math. Programming, 9 (1975), 257–277.MathSciNetMATHCrossRefGoogle Scholar
  108. KOSTREVA, M. M. 1. Direct algorithms for complementarity problems. Ph. D. Thesis, Rensselaer Polytechnic Institute, Troy, New York (1976).Google Scholar
  109. KOSTREVA, M. M. 2. Block pivot methods for solving the comnplementarity problem. Linear Alg. Appl. 21, (1978), 207–215.MathSciNetMATHCrossRefGoogle Scholar
  110. KOSTREVA, M. M. 3. Cycling in linear complementarity problems. Math. Programming, 16 (1979), 127–130.MathSciNetMATHCrossRefGoogle Scholar
  111. KOSTREVA, M. M. 4. Finite test sets and P-matrices. Proc. Amer. Math. Soc. 84, Nr. 1, (1982), 104–105.MathSciNetMATHGoogle Scholar
  112. KOSTREVA, M. M. 5. Elasto-hydrodynamic lubrication: a non-linear complementarity problem. Internat. J. Numer. Methods in Fluids 4 (1984), 377–397.MathSciNetMATHCrossRefGoogle Scholar
  113. KOSTREVA, M. M. 6. Recent results on complementarity models for engineering and economics. Infor 28, Nr.4 (1990), 324–334.MATHGoogle Scholar
  114. KWAK, B. M. 1. Complementarity problem formulation of three-dimensional frictional contact. J. Appl. Mechanics, 58 (1991), 134–140.MATHCrossRefGoogle Scholar
  115. LEMKE, C. E. 1. Bimatrix equilibrium points and matheamtIcal programming. Management Sci. 11 (1965), 681–689.MathSciNetMATHGoogle Scholar
  116. LEMKE, C. E. 2. On complementarity pivot theory. In: Mathematics of the Decision Sciences, (Eds. G. B. Dantzig and A. F. Veinott Jr.), Amer. Math. Soc. Providence R. I. (1968), 95–114.Google Scholar
  117. LEMKE, C. E. 3. Some pivot schemes for the linear complementarity problem. Math. Programming Study 7, (1978), 15–35.MathSciNetMATHCrossRefGoogle Scholar
  118. LEMKE, C. E. 4. Recent resutls on complementarity problem. In: Nonlinear Programming, (Eds. J. B. Rosen, O. L. Mangasarian and K. Ritter), Academic Press (1970), 349–384.Google Scholar
  119. LEMKE, C. E. 5. A brief survey of complementarity theory. In: Constructive Approaches to Mathematical Models, (Eds. C. V. Coffman and G. J. Fix), Academic Press, New York (1979).Google Scholar
  120. LEMKE, C. E. 6. A survey of complementarity theory. In: Variational Inequalities and Complementarity Problems. Theory and Applications, (Eds. R. W. Cottle, F. Giannessi and J. L. Lions), John Wiley & Sons (1980), 211–239.Google Scholar
  121. LEMKE, C. E. and HOWSON, J. T. 1. Equilibrium points of bimatrix games. Siam J. Appl. Math. 12, Nr. 2, (1964), 413–423.MathSciNetMATHCrossRefGoogle Scholar
  122. LIN, Y. and CRYER, C. W. 1. An alternating direction implict algorithm for the solution of linear complementarity problems arising from free boundary problems. Appl. Math. Optim 13, (1985). 1–17.MathSciNetMATHCrossRefGoogle Scholar
  123. LUO, Z. Q., PANG, J. S. and RALPH, D. 1. Mathematical Programs with Equilibrium Constraints. Cambridge University Press, (1996).CrossRefGoogle Scholar
  124. MAGNANTI, T. L. 1. Model and algorithms for predicting urban trafic equilibria. Working paper, Mit, Cambridge, Mass., U.S.A.Google Scholar
  125. MAIER, G. 1. A matrix structural theory of piecewise-linear elastoplasticity with interacting yield-planes. Meccanica J. Italian Assoc. Theoret. Annl Mech 5 (1970) 54MATHGoogle Scholar
  126. MAIER, G. 2. Problem on parametric linear complementarity problemn. Siam, Rev. 14, Nr. 2, (1972), 364–365.MathSciNetCrossRefGoogle Scholar
  127. MAIER, G., ANDREUZZI, F., GIANNESSI, F., JURINA, L. and TADDEI, F. 1. Unilateral contact, elastoplasticity and complementarity with reference to offshore pipeline design. Comput. Methods Appl. Mech. Engrg., 17/18 (1979), 469–495.CrossRefGoogle Scholar
  128. MAIER, G. and KANEKO, I. 1. Optim design of plastie structures under displacement constraints. Comput Methods Appl. Mech. Engrg. 27 (1981), 369–391.MATHCrossRefGoogle Scholar
  129. MANDELBAUM, A. 1. The dynamic complementarity problem. Working paper, Stanford Business School (1990).Google Scholar
  130. MANGASARIAN, O. L. 1. Equivalence of the complementarity problem to a system of nonlinear equations. Siam, J. Appl. Math 31 (1976) 89–92.MathSciNetMATHCrossRefGoogle Scholar
  131. MANGASARIAN, O. L. 2. Linear complementarity problem solvable by a single linear program. Math. Programming 10 (1976), 263–270.MathSciNetMATHCrossRefGoogle Scholar
  132. MANGASARIAN, O. L. 3. Solution of linear complementarity problem by linear programming. In: Numerical Analysis, (Ed. G Wwatsnn) Lecture Notes in Mathematics Nr. 506, Springer-Verlag, (1976), 166–175.CrossRefGoogle Scholar
  133. MANGASARIAN, O. L. 4. Solution of symmetric complementarity problems by iterative methods. J. Opt. Theory Appl. 22 Nr. 4 (1977), 465–485.MathSciNetMATHCrossRefGoogle Scholar
  134. MANGASARIAN, O. L. 5. Characterization of linear complementarity problems as linear programs. Math. Programming Study 7, (1978), 74–87.MathSciNetMATHCrossRefGoogle Scholar
  135. MANGASARIAN, O. L. 6. Charaacterization of bounded solutions of linear complementarity problems. Math. Programming Study 19, (1982), 153–166.MathSciNetCrossRefGoogle Scholar
  136. MANGASARIAN, O. L. 7. Locally unique solutions of quadratic programs, linear and nonlinear complementarity problems. Math. Programming 19, (1980), 200–212.MathSciNetMATHCrossRefGoogle Scholar
  137. MANGASARIAN, O. L. 8. Simplified characterization of linear complementarity problems as linear programs. Math. Oper. Research, 4 (1979), 268–273.MathSciNetMATHCrossRefGoogle Scholar
  138. MANGASARIAN, O. L. 9. Iterative solution of linear programs. Siam J. Numer. Anal. 18, Nr. 4 (1981)), 606–614.MathSciNetMATHCrossRefGoogle Scholar
  139. MANGASARIAN, O. L. 10. Sparsity-preserving Sor algorithms for separable qudratic and linear programming. Comput. Oper. Research 11, Nr. 2 (1984), 105–112.MathSciNetMATHCrossRefGoogle Scholar
  140. MANGASARIAN, O. L. and MEYER, R. R. 1. Nolinear perturbation of linear prograams. Siam J. Control Opt. 17, Nr. 6 (1979), 745–752.MathSciNetMATHCrossRefGoogle Scholar
  141. MATHIESEN, L. 1. Computational experience in solving equilibrium models by a sequence of linear complementarity problems. Oper. Research 33, (1985), 1225–1250.MathSciNetMATHCrossRefGoogle Scholar
  142. MATHIESEN, L. 2. Computation of economic equilibria by a sequence of linear complementatity problems. Math. Programming Study 23, (1985), 144–162.MathSciNetMATHCrossRefGoogle Scholar
  143. MATHIESEN, L. 3. An algorithm based on a sequence of linear complementarity problems applied to a Walrasian equilibrium model: An example. Math. Programming 37, (1987), 1–18.MathSciNetMATHCrossRefGoogle Scholar
  144. MEEROV, M. V., BERSHCHANSKII, YA. M. and LITVAK, M. L. 1. Optimization methods for one classs of multivariable systems. Internat, J. Control 3, Nr. 2, (1980), 239–270.MathSciNetCrossRefGoogle Scholar
  145. MEISTER, H. 1. A parametric approach to complementarity theory. J. Math. Anal. Appl. 101, (1984), 64–77.MathSciNetMATHCrossRefGoogle Scholar
  146. MITRA, G. 1. An exposition of the (linear) complementarity problem. Int. J. Math. Educ. Sci. Technol. 10, Nr. 3, (1979), 401–416.MATHCrossRefGoogle Scholar
  147. MOHAN, S. R. 1. Parity of solutions for linear complementarity problems with Z-matrices. Opsearch 13, (1976), 19–28MathSciNetGoogle Scholar
  148. MOHAN, S. R. 2. Existence of solution rays for linear complementarity problems with Z-matrices. Math. Programming Study 7, (1978), 108–119.MathSciNetMATHCrossRefGoogle Scholar
  149. MOHAN, S. R. 3. Degenerate complementarity cones induces by a K 0 -matrix. Math. Programming 20 (1998), 103–109.MathSciNetCrossRefGoogle Scholar
  150. MOHAN, S. R. 4. On the simplex method and a class of linear complementarity problems. Linear Algebra Appl. 14, Nr. 1 (1976), 1–9.MathSciNetMATHCrossRefGoogle Scholar
  151. MOHAN, S. R., NEOGY, S. K. and SRIDHAR, R. 1. The generalized linear complementarity problem revisited. Math. Programming, 74, (1996), 197–218.MathSciNetMATHGoogle Scholar
  152. MORE, J. J. 1. Class of functions and feasibility conditions in nonlinear complementarity problems. Math. Programming 6, (1974), 327–338.MathSciNetMATHCrossRefGoogle Scholar
  153. MORE, J. J. 2. Coercivity conditions in nonlinear complementarity problems. Siam Rev. 16, Nr. 1 (1974). 1–16.MathSciNetMATHCrossRefGoogle Scholar
  154. MURTY, K. G. 1. On the number of solutions to the complementarity quadratic programming problem. Doctoral Dissertation, Engineering Science, University of California, Berkeley. (1968).Google Scholar
  155. MURTY, K. G. 2. Linear and Combinatorial Programming. John Wiley, New York (1976).MATHGoogle Scholar
  156. MURTY, K. G. 3. On the characterization ofP-matrices. Siam, J. Appl. Math. 20, Nr. 3 (1971) 378–384.MathSciNetMATHCrossRefGoogle Scholar
  157. MURTY, K. G. 4. On the number of solutions to the complementarity problem and the spanning properties of complementarities cones. Linear Algebra Appl. 5, (1972), 65–108.MATHCrossRefGoogle Scholar
  158. MURTY, K. G. 5. On the Bard-type scheme for solving the complementarity problem. Opsearch 11 (1974), 123–130.MathSciNetGoogle Scholar
  159. MURTY, K. G. 6. An algorithm for finding all the feassible commplemmentarity bases for a linear complementarity problem. Tech. Rept. 72–2, Dept. of Industiral Engineering, Univ. of Michigan (1972)Google Scholar
  160. MURTY, K. G. 7. Computational complexity of complementarity pivot methods. Math. Programming Study 7, (1978), 61–73.MATHCrossRefGoogle Scholar
  161. MURTY, K. G. 8. On the linear complementarity problem. Operations Research Verfahren 31 (1978) 425–439Google Scholar
  162. MURTY, K. G. 9. Linear Complementarity. Linear and Nonlinear Programming. Heldermann, Verlag, Berlin (1988).MATHGoogle Scholar
  163. OH, K. P. 1. The formulation of the mixed lubrication problem as a generalized nonlinear complementarity problem. J. of Tribology 108 (October) (1986), 598–604.CrossRefGoogle Scholar
  164. PANG, J. S. 1. A new and efficient algorithm for a class of portfolio selection problems. Oper. Research 28, (1980), 754–767.MATHCrossRefGoogle Scholar
  165. PANG, J. S., KANEKO, I. and HALLMAN, W. P. 1. On the solution of some (parametric) linear complementarity problems with applications to portfolio selection structural engineering and actuarial graduation. Math. Programming, 16 (1979), 325–347.MathSciNetMATHCrossRefGoogle Scholar
  166. PANG, J. S. and LEE, P. S. C. 1. A parametric linear complemenarity technique for the computation of equilibrium prices in a single comodity spatial model. Math. Programming, 20 (1981), 81–102.MathSciNetMATHCrossRefGoogle Scholar
  167. PARIS, Q. 1. Perfect aggregation and disaggregation of complementarity problems. Amer. J. Agricultural Economics 62 (1980), 681–688.CrossRefGoogle Scholar
  168. PARIS, Q. 2. Revenu and cost uncertainty, genearalized mean-variance and the linear complementarity problem, Amer. J. Agricultural Economics 61 (1979), 268–275.CrossRefGoogle Scholar
  169. PETERSON, E. L. 1. The conical duality and complementarity ofprice and quality for multicomodity spatial and temporal network allocation problems. Discussion paper , Nr. 207, Center for Mathematical Studies in Economics and Management Science, Northwestern University (1976).Google Scholar
  170. RIDDELL, R. C. 1. Equivalence of nonlinear complementarity problems and least element problems in Banach lattices. Math. Oper. Res. 6 Nr. 3 (1981), 462–474.MathSciNetMATHCrossRefGoogle Scholar
  171. SCARF H. E. and HANSEN, T. 1. Computation ofEconomic Equilibria. Yale University Press, New Haven, Conn. (1983).Google Scholar
  172. SMITH, T. E. 1. A solution condition for complementarity problems with an application to spatial price equilibrium. Appl. Math. Comput. 15 (1984), 61–69.MathSciNetMATHCrossRefGoogle Scholar
  173. STEWART, D. E. 1. A high accuracy method for solving Ode S with discontinuous right-hand side. Numer, Math. 58, (1990), 299–328.MathSciNetMATHCrossRefGoogle Scholar
  174. STEWART, D. E. 1. An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. International J. Numerical Meth. Engineering, 39 (1996), 2673–2691.MATHCrossRefGoogle Scholar
  175. STRANG, G. 1. Discrete plasticity and the complementarity problem. In: Formulations and Computational Algorithms in Finite Elements Analysis: U. S.-Germany Symposium, (Eds., K.J. Bathe, J.T. Odenand W. Wunderlich), Mit Press, Cambridge, Massachusetts (1977), 839–854.Google Scholar
  176. VARC, R. 1. On the solutions of equations with jumping nonlinearities. Zamm. Z. Angew. Math. Mech. 67, Nr. 5 (1987), 452–454.Google Scholar
  177. TAMIR, A. 1. On a characterization of P-matrices. Math. Programming 4 (1973), 110–112.MathSciNetMATHCrossRefGoogle Scholar
  178. TAMIR, A. 2. The Complemen tari ty Problem of Math ematical Programing. Ph. D. Diss ertation, Dept. Oper. Researc h. Case Western Reserve University (1973).Google Scholar
  179. TAMIR, A. 3. Minimality and Complementarity properties associated with Z-functions and M-functions. Math. Progamming 7 (1974), 17–31.MathSciNetMATHCrossRefGoogle Scholar
  180. TAMIR, A. 4. On the number of solu tion s to the li ne ar comple mentarity p roblem. Math. Proo ramm ing 10 (1976), 347–353.MathSciNetMATHCrossRefGoogle Scholar
  181. TOBIN, R. L. 1. Avariable dime ns ion so lutio n app roach for the gene ral spatialpriceequilib rium problem. Math. Programming, 40 (1988), 33–51.MathSciNetMATHCrossRefGoogle Scholar
  182. VAN EIJNDHOVEN, J. T. J. 1. Solving the linear complementarity problem in circuit simulation. Siam J. Control. Opt. 24, Nr. 5 (1986), 1050–1062.MATHCrossRefGoogle Scholar
  183. VANDENBERGHE, L., DE MOOR, B. and VANDEWALLE, J. 1. The generalized linear complementarity problem applied to the complete analysis of resistive piecewise-linear circuits. Ieee, Transactions on Circuits and Systems 11 (1989), 1382–1391.CrossRefGoogle Scholar
  184. VILLAR, A. 1. Operator Theorems with Applications to Distributive Problems and Equilibrium Models. Lecture Notes in Econom. And Math. Systems Vol. 377, Springer-Verlag (1992).MATHCrossRefGoogle Scholar
  185. WAKEFIELD, R. R. and TIN-LOI, F. 1. Large scale nonholonomic elastoplastic analysis using a linear complementarity formulation. Comnuter Meth. Appl. Mechanics and Engineering 84 (1990), 229–242.MATHCrossRefGoogle Scholar
  186. WAKEFIELD, R. R. and TIN-LOI, F. 2. Large displacement elastoplastic analysis offrames using an iterative Lcp approach. Int. J. Mech Sci. 33 Nr. 5 (1991), 379–391.MATHCrossRefGoogle Scholar
  187. WIT, G. D. 1. Determinants of self-employment. Doctor Thesis, University of Amsterdam (1991).Google Scholar
  188. WINTGEN, G. 1. Indifferente optimierung probleme. MkÖ Tagung, Konfeerenzprotokoll, Part Ii, Akademie-Verlag, Berlin (1964). 3–6.Google Scholar
  189. WINTGEN, G. 2. Indiffereente Optimierungsprobleme. Operations Research Verfahren 6 (1969), 233–236.MATHGoogle Scholar
  190. WIT, G. D. and WINDEN, F. V. 1. An empirical analysis of self-employmet in the Netherlands. Small Business Economics 1 (1989), 263–272.CrossRefGoogle Scholar
  191. WIT, G. D. and WINDEN, F. V. 2. An empirical analysis of self-employment in the Netherlands. Economics Letters 32 (1990), 97–100.CrossRefGoogle Scholar
  192. WIT, G. D. and WINDEN, F. V. 3. An m-sector, n-group behavioral model of self-employment. Small Business Economics 3 (1991), 49–66.CrossRefGoogle Scholar
  193. YUN, K. K.1. On the existence of a unique and stable market equilibrium. J. Econom. Theory 20 (1979), 118–123.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • George Isac
    • 1
  1. 1.Department of Mathematics and Computer ScienceRoyal Military College of CanadaKingstonCanada

Personalised recommendations