Advertisement

Complementarity Problems. Origins and Definitions

  • George Isac
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 41)

Abstract

After more than thirty five years of research, the Complementarity Theory, with its applications in optimization, economics, engineering, mechanics, elasticity, game. theory, stochastic optimal control and sciences, has become a fruitful new domain in applied mathematics. It has also deep relations with fundamental mathematics.

Keywords

Variational Inequality Complementarity Problem Convex Cone Linear Complementarity Problem Nonlinear Complementarity Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALIZADEH, F. 1. Interior point methods in semidefinite programming with application to combinatorial optimization. Siam J. Opt. 5 (1995), 13–51.MathSciNetMATHCrossRefGoogle Scholar
  2. BARONTI, M. 1.The nonlinear complementarity problem and related questions. Rend. Mat. Appl. 6 (1986), 313–319.MathSciNetMATHGoogle Scholar
  3. BENSOUSSAN, A 1. Variational inequalities and optimal stopping time problems. In: Calculus of Variations and Control Theory (D. L. Russel (Ed.)), Academic Press (1976), 219–244.Google Scholar
  4. BENSOUSSAN, A, GOURSET, M. and LIONS, J. L. 1. Contrôle impulsionnel et inequations quasi-variationanelles stationnaires. C. R. Acad. Sci. Paris, 276 (1973), A 1279–1284.MATHGoogle Scholar
  5. BENSOUSSAN, A and LIONS, J. L. 1. Problèmes de temps d’arrêt optimal et inéquations variationnelles parabo-liques. Applicable Anal. (1973), 267–294.Google Scholar
  6. BENSOUSSAN, A and LIONS, J. L. 2. Nouvelle formulation de problèmes de contrôle impulsionnel et applications. C. R. Acad. Sci. Paris, 276 (1973), A 1189–1192.MathSciNetMATHGoogle Scholar
  7. BENSOUSSAN, A and LIONS, J. L. 3. Nouvelles méthodes en contrôle impulsionnel. Appl. Math. Optim., 1 (1974), 289–312.MathSciNetCrossRefGoogle Scholar
  8. BERSHCHANSKII, Y. M. and MEEROV, M. V. 1. The complementarity problem: Theory and methods of solutions. Automation and Remote Control 44 (1983), 687–710.Google Scholar
  9. BOD, P. 1. On closed sets having a least element. In: Optimization and Operations Research (W. Oettli and K. Ritter (Eds.)), Lecture Notes in Economics and Math. Systems, Springer-Verlag, 117 (1976), 23–34.Google Scholar
  10. BOD, P. 2. Sur un modèle non-linéaire des rapports interindustriels. Rairo, Recherche Oper. 11 Nr. 4 (1977), 405–415MathSciNetMATHGoogle Scholar
  11. BORWEIN, J. M. 1. Alternative theorems forgeneral complementarity problems. Preprint, Dalhousie University (1984).Google Scholar
  12. BORWEIN, J. M. 2. Generalized linear complementarity problems treated without fixed-point theory. J. Opt. Theory Appl, 43 Nr. 3, (1984), 343–356.MATHCrossRefGoogle Scholar
  13. BORWEIN, J. M. and DEMPSTER, M. A. H. 1. The linear order complementarity problem. Math. Oper. Research 14 Nr. 3 (1989), 534–558.MathSciNetCrossRefGoogle Scholar
  14. BULAVSKI, V., ISAC, G. and KALASHNIKOV, V. 1. Application of topological degree to complementarity problems. In: Multilevel Optimization: Algorithms and Applications (A. Migdalas, P. M. Pardalos, and P. Warbrant, P. (Eds)), Kluwer (1998), 333–358.CrossRefGoogle Scholar
  15. CAPUZZO-DOLCETTA, I. LORENZANI, M. and SPIZZICHINO, F. 1. Implicit complementarity problems and quasi-variational inequalities. In: Variational and Complementarity Problems. Theory and Applications. (R. W Cottle, F. Giannessi and J. L. Lions (eds.)), John Wiley & Sons (1980), 271–283.Google Scholar
  16. CAPUZZO-DOLCETTA, I. and MOSCO, U. 1. A degenerate complementarity system and applications to the optimal stoping Markov chains. Boll. Un. Imat. Ital. 95) 17-B, (1980), 692–703.Google Scholar
  17. CARBONE, A and ISAC, G. 1. The generalized order complementarity problem. Applications to economics. An existence result. In Nonlinear Studies 5 Nr. 2 (1998), 129–151.Google Scholar
  18. CHAN, D. and PANG, J. S. 1. The generalized quasivariational inequality problem. Math. Oper. Res. 7, Nr. 2 (1982), 211–222.MathSciNetMATHCrossRefGoogle Scholar
  19. CHEN GUANG-YA and YANG XIAO-Qi 1. The vector complementarity problem and its equivalence with the weak minimal element in ordered spaces. J. Math. Anal. Appl. 153 (1990), 136–158.MathSciNetCrossRefGoogle Scholar
  20. COTTLE, R. W. 1. Nonlinear Programs with Positively Bounded Jacobians. Ph. D. Thesis, Department of Mathematics, University of California, Berkley (1964).Google Scholar
  21. COTTLE, R. W. 2. Note on a fundamental theorem in quadratic programming. Siam J. Appl. Math. , 12 (1964), 663–665.MathSciNetMATHCrossRefGoogle Scholar
  22. COTTLE, R. W. 3. Nonlinear programs with positively bounded Jacobians. Siam J. Appl Math. 14 Nr. 1 (1966), 147–158.MathSciNetMATHCrossRefGoogle Scholar
  23. COTTLE, R. W. 4. On a problem in linear inequalities. J. London Math. Soc. 43 (1968), 378–384.MathSciNetMATHCrossRefGoogle Scholar
  24. COTTLE, R. W. 5. Monotone solutions of the parametric linear complementarity problem. Math. Programming 3 (1972), 210–224.MathSciNetMATHCrossRefGoogle Scholar
  25. COTTLE, R. W. 6. Solution rays for a class of complementarity problems. Math. Programming Study 1 (1974), 59–70.MathSciNetCrossRefGoogle Scholar
  26. COTTLE, R. W. 7. On Minkowski matrices in the linear complementarity problem. In: Optimization and Control, (R. Bulirsch, W. Oettli and J. Stoer (Eds.)), Lecture Notes in Mathematics, Springer-Verlag Nr. 477, (1975), 18–26.Google Scholar
  27. COTTLE, R. W. 8. Computational experience with large-scale linear complementarity problems. In: Fixed Points. (S. Karamardian (Ed.)), Academic Press (1976), 281–313.Google Scholar
  28. COTTLE, R. W. 9. Complementarity and variational problems. Symposia Mathematica 19 (1976), 177–208.MathSciNetGoogle Scholar
  29. COTTLE, R. W. 10. Fundamentals of quadratic programming and linear complementarity. In: Engineering Plasticity by Math. Programming. (M. Z. Cohn and G. Maier (Eds.)), Pergamon Press (1979), 293–323.Google Scholar
  30. COTTLE, R. W. 11. Numerical methods for complementarity problems in engineering and applied science. In: Computing Methods in Applied Sciences and Engineering, 1977, I, (R, Glowinski and J. L. Lions (Eds.)), Lecture Notes in Mathematics, Springer-Verlag, Nr.704, (1979), 37–52.Google Scholar
  31. COTTLE, R. W. 12. Some recent developments in linear complementarity theory. In: Variational Inequalities and Complementarity Problems, (R. W. Cottle, F. Giannessi and J. L. Lions (Eds)), John Wiley & Sons, (1980), 97–104.Google Scholar
  32. COTTLE, R. W. 13. Completely-Q-matrices. Math. Programming 19 (1980), 347–351.MathSciNetMATHCrossRefGoogle Scholar
  33. COTTLE, R. W. 14. The principal pivoting method revisited. Math. Programming 48 (1990), 369–385.MathSciNetMATHCrossRefGoogle Scholar
  34. COTTLE, R. W. and DANTZIG, G. B. 1. A generalization of the linear complementarity problemm. J. Combinatorial Theory, 8 (1) (1970), 79–90.MathSciNetMATHCrossRefGoogle Scholar
  35. COTTLE, R. W., HABETLER, G.J. and LEMKE, C. E. 1. Quadratic forms semi-definite over convex cones. In: Proceedings of the Princeton Symposium on Mathematical Programming (H. W. Kuhn (Ed.)), Princeton University Press, Princeton, New Jersey (1970), 551–565.Google Scholar
  36. COTTLE, R. W., HABETLER, G.J. and LEMKE, C. E. 2. On classes of copositive matrices. Linear Algebra Appl. 3 (1970), 295–310.MathSciNetMATHCrossRefGoogle Scholar
  37. COTTLE, R. W., PANG, J. S. and STONE, R. E. 1. The Linear (omplementarity Problem. Academic Press, (1992).Google Scholar
  38. COTTLE, R. W. and VEINOTT, A. F. JR. 1. Polyhedral sets having a least element. Math. Programming 3 (1972), 238–249.MathSciNetMATHCrossRefGoogle Scholar
  39. DANTZIG, G. B. and COTTLE, R. W. 1. Positive semi-definite programming. In: Nonlinear Programming, (J. Abadie (Ed.)), North-Holland, Amsterdam (1967), 55 – 73 .Google Scholar
  40. DE MOOR, B. 1. Mathematical Concepts and Technics for Modelling of Static and Dynamic Systems. Ph D. Thesis, Dept., Electrical Engineering, Katholike Universiteit Leuven, Leuven, Belgium (1988).Google Scholar
  41. DE MOOR, B., VANDENBERGHE, L. and VANDENWALLE, J. 1. The generalized linear complementarity problem and an algorithm to find all its solutions. Math. Programming 57 (1992), 415–426.MathSciNetMATHCrossRefGoogle Scholar
  42. DE SHUTTER, B. and DE MOOR, B. 1. The extended linear complementarity problem. Math. Programming 71 (1995), 289–325.MathSciNetGoogle Scholar
  43. DIRKSE, S. P. and FERRIS, M. C. 1. Mcplib: A collection of nonlinear mixed complementarity problem. Optim. Methods and Software 5 (1995), 319–345.CrossRefGoogle Scholar
  44. DORN, W. S. 1. Self dual quadratic programs. Siam J. Appl. Math. 9 Nr. 1 (1961), 51–54.MathSciNetMATHCrossRefGoogle Scholar
  45. DU VAL, P. 1. The unloading problem for plan curves. Amer. J. Math. 62 (1940), 307–311.MathSciNetMATHCrossRefGoogle Scholar
  46. EAVES, B. C. 1. The Linear Complementarity Problem in Mathematical Programming. Ph. D. Thesis, Department of Operations Research, Stanford University, Stanford, California (1969).Google Scholar
  47. EAVES, B. C. 2. On the basic theorem of complementarity. Math. Programming 1 (1971), 68–75.MathSciNetMATHCrossRefGoogle Scholar
  48. EAVES, B. C. 3. The linear complementarity problem. Management Sci. 17 Nr. 9 (1971), 612–634.MathSciNetMATHCrossRefGoogle Scholar
  49. EAVES, B. C. 4. Computing stationary points. Math. Programming Study 7(1978), 1–14.MathSciNetMATHCrossRefGoogle Scholar
  50. EAVES, B. C. 5. Where solving for stationary points by Lcp is mixing Newton iterates. In: Homotopy Methods and Global Convergence, (B. C. Eaves, F. J. Gould, H. O. Peitgen and M. J. Todd (Eds.)), Plenum (1983), 63–78.CrossRefGoogle Scholar
  51. EAVES, B. C. 6. More with the Lemke complementarity algorithm. Math. Programming, 15 Nr. 2(1978), 214–219.MathSciNetGoogle Scholar
  52. EAVES, B. C. 7. Thoughts on computing market equilibrium with Slcp. In: The Computation and Modelling of Economic Equilibrium, (A. Talman and G. Van der Laan, (Eds.)), Elsevier Publishing Co. Amsterdam, (1987), 1–18.Google Scholar
  53. EAVES, B. C. and LEMKE, C. E. 1. Equivalence of L.C.P. and P.L.C. Math. Oper. Research, 6 Nr. 4 (1981), 475–484.MathSciNetMATHCrossRefGoogle Scholar
  54. EAVES, B. C. 2. On the equivalence of the linear complementarity problem and system of piecewise linear equations. In: Homotopy Methods and Global Convergence, (B. C. Eaves, F. J. Gould, H. O. Peitgen and M. J. Todd (Eds.)), Plenum Press, (1983), 79–90.CrossRefGoogle Scholar
  55. EBIEFUNG, A. 1. The Generalized Linear Complementarity Problem and its Applications. Ph. D. Dissertation, Clemson University, Clemson , Sc 29634 (1991).Google Scholar
  56. EAVES, B. C. 2. Nonlinear mapping associated with the generalized linear complementarity. Math. Programming, 69 (1995), 255–268.MathSciNetGoogle Scholar
  57. EAVES, B. C. 3. Existence theory and Q-matrix characterization for the generalized linear complementarity problem. Linear Alg. Appl. 223/224 (1995), 155–169.MathSciNetCrossRefGoogle Scholar
  58. EBIEFUNG, A. and KOSTREVA, M. M. 1. The generalized Leontief input-output model and its application to the choice of new technology. Annals Oper. Res. 44 (1993), 161–172.MathSciNetMATHCrossRefGoogle Scholar
  59. FERRIS, M. C. and PANG, J. S. 1. Engineering and economic applications of complementarity problems. Siam Rev. 39 Nr. 4 (1997), 669–713.MathSciNetMATHCrossRefGoogle Scholar
  60. FUJIMOTO, T. 1. Nonlinear complementarity problems in function space. Siam J. Control Optim., 18 Nr. 6 (1980), 621–623.MathSciNetMATHCrossRefGoogle Scholar
  61. FUJIMOTO, T. 2. An extension of Tarski’s fixed point theorem and its applications to isotone complementarity problem. Math. Programming, 28 (1984), 116–118.MathSciNetMATHCrossRefGoogle Scholar
  62. FUJISAWA, T. and KUH, E. S. 1. Piecewise-linear theory of nonlinear network. Siam J. Appl. Math., 22 (1972), 307–328.MathSciNetMATHCrossRefGoogle Scholar
  63. FUJISAWA, T., KUH, E. S. and OHTSUKI, T. 1. A sparse matrix method for analysis of piecewise-linear resistive networks. Ieee Transactions on Circuit Theory 19 (1972), 571–584.MathSciNetCrossRefGoogle Scholar
  64. GARCIA, C. A. 1. The Complementarity Problem and its Applications. Ph. D. Thesis, Rensselaer Polytechnic Institute, Troy, New York, (1973).Google Scholar
  65. GARCIA, C. A. 2. Some classes of matrices in linear complementarity theory. Math. Programming, 5 (1973), 299–310.MathSciNetMATHCrossRefGoogle Scholar
  66. GARCIA, C. A. 3. On the relationship on the lattice point problem, the complementarity problem and the set representation problem. Technical Report Nr. 145, Department of Mathematical Sciences, Clemson University, Clemson, South Carolina, USA, (1973).Google Scholar
  67. GARCIA, C. A. 4. A note on a complementarity variant of Lemke’s methods. Math. Programming 10 (1976), 134–136.MathSciNetMATHCrossRefGoogle Scholar
  68. GARCIA, C. A. 5. A note on a complementarity problem. J.Opt. Theory Appl. 21 Nr. 4 (1977), 529–530.MATHCrossRefGoogle Scholar
  69. GARCIA, C. B., GOULD, F. J. and TURNBULL, T. R. 1. A PL homotopy method for the linear complementarity problem. In: Mathematical Programming, (R. W. Cottle, M. L. Kelmanson and B. Korte (Eds.)), North-Holland, Amsterdam, (1981), 113–145.Google Scholar
  70. GARCIA, C. B., GOULD, F. J. and TURNBULL, T. R. 2. Relation between PL maps, complementarity cones and degree in linear complementarity problems. In: Homotopy Methods and Global Convergence, (B. C. Eaves, F. J. Gould, H. O. Peitgen and M.J. Todd (Eds)), Plenum Press, New York, (1983), 91–144.CrossRefGoogle Scholar
  71. GARCIA, C. B. and LEMKE, C. E. 1. All solutions to linear complementarity problems by implicit search. R. P. I. Math. Rep. Nr. 91, Rensselaer Polytechnic Institute, Troy, New York, (1970).Google Scholar
  72. GOULD, F. J. and TOLLE, J. W. 1. A unified approach to complementarity in optimization. Discrete Mathematics, 7 (1974), 225–271.MathSciNetMATHCrossRefGoogle Scholar
  73. GOULD, F. J. and TOLLE, J. W. 2. Complementarity Pivoting on a Pseudomanifold with Applications in the Decision Sciences. Heldermann Verlag, Berlin (1983).Google Scholar
  74. GOWDA, M. S. 1. Pseudomonotone and copositive-star matrices. Linear Algebra and its Applications, 113 (1989), 107–110.MathSciNetMATHCrossRefGoogle Scholar
  75. GOWDA, M. S. 2. Complementarity problems over locally compact cones. Siam J. Control Opt., 27 (1989), 836–841.MathSciNetMATHCrossRefGoogle Scholar
  76. GOWDA, M. S. 3. Affine pseudomonotone mappings and the linear complementarity problem. Siam J. Matrix Anal. Appl. 11 (1990), 373–380.MathSciNetMATHCrossRefGoogle Scholar
  77. GOWDA, M. S. 4. On Q-matrices. Math. Programming 49, (1990), 139–142.MathSciNetMATHCrossRefGoogle Scholar
  78. GOWDA, M. S. 5. On the transpose of a pseudomonotone matrix and the Lcp. Linear Algebra Appl. 140 (1990), 129–137.MathSciNetMATHCrossRefGoogle Scholar
  79. GOWDA, M. S. 6. Applications of degree theory to linear complementarity problems. Math. Oper. Res. 18 (1993), 868–879.MathSciNetMATHCrossRefGoogle Scholar
  80. GOWDA, M. S. 7. On reducing a monotone horizontal Lcp to an Lcp. Appl. Math. Letters 8(1994) 97–100MathSciNetCrossRefGoogle Scholar
  81. GOWDA, M. S. 8. On the extended linear complementarity problem. Math. Programming 72 (1996), 33–50.MathSciNetMATHGoogle Scholar
  82. GOWDA, M. S. 9. An analysis of zero set and global error bound properties of a piecewise affine function via its recession function. Siam J. Matrix Anal. Appl. 17 Nr. 3 (1996), 594–609.MathSciNetMATHCrossRefGoogle Scholar
  83. GOWDA, M. S. and PANG, J. S. 1. On solution stability of the linear complementarity problem. Math. Oper. Research 17 (1992), 77–83.MathSciNetMATHCrossRefGoogle Scholar
  84. GOWDA, M. S. and PANG, J. S. 2. The basic theorem of complementarity revisited. Math. Programming 58 (1993), 161–177.MathSciNetMATHCrossRefGoogle Scholar
  85. GOWDA, M. S. and PANG, J.S. 3. On the boundedness and stability of solutions to the affine variational inequality problem. Siam J. Control and Opt. 32 (1994), 421–441.MathSciNetMATHCrossRefGoogle Scholar
  86. GOWDA, M. S. and PANG, J. S. 4. Stability analysis of variational inequalities and nonlinear complementarity problems, via the mixed linear complementarity problem and degree theory. Math. Oper. Research, 19 (1994), 831–879.MathSciNetMATHCrossRefGoogle Scholar
  87. GOWDA, M. S. and SEIDMAN, T. I. 1. Generalized linear complementarity problems. Math. Programming 46 (1990), 329–340.MathSciNetMATHCrossRefGoogle Scholar
  88. GOWDA, M. S. and SZNAJDER, R. 1. The generalized order linear complementarity problem. Siam J. Matrix Anal. Appl. 15 Nr. 3 (1994), 779–795.MathSciNetMATHCrossRefGoogle Scholar
  89. HABETLER, G. J. and KOSTREVA, M. M. 1. On a direct algorithm for nonlinear complementarity problem. Siam J. Control Opt., 16 Nr. 3 (1978), 504–511.MathSciNetMATHCrossRefGoogle Scholar
  90. HABETLER, G. J. and KOSTREVA, M. M. 2. Sets of generalized complementarity problems and P-matrices. Math. Oper. Res., 5 Nr. 2 (1980), 280–284.MathSciNetMATHCrossRefGoogle Scholar
  91. HARKER, P. T. and PANG, J. S. 1. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications. Math. Programming, Series B, Nr. 48 (1990), 161–220.MathSciNetMATHCrossRefGoogle Scholar
  92. HARRISON, J. M and REIMAN, M. I. 1. Reflected Brownian motion on an orthant. Annals of Probability, 9 (1981), 302–308.MathSciNetMATHCrossRefGoogle Scholar
  93. HARRISON, J. M. and SHEPP, L. A. 1. A tandem storage system and its diffusion limit. Stoch. Proc. and Appl. 16 (1984), 257–274.MathSciNetMATHCrossRefGoogle Scholar
  94. HIPFEL, D. M. 1. The Nonlinear Differential Complementarity Problem. Ph. Thesis, Rensselaer Polytechnic Institute Troy, New York, (1993).Google Scholar
  95. INGLETON, A. W. 1. A problem in linear inequalities. Proc. London Math. Soc. 16 (1966), 519–536.MathSciNetMATHCrossRefGoogle Scholar
  96. INGLETON, A. W. 2. The linear complementarity problem. J. London Math. Soc;. (2) 2 (1970), 330–336.MathSciNetMATHCrossRefGoogle Scholar
  97. ISAC, G. 1. Un théorème de point fixe. Application au problème d’optimisation d’Ersov. Sem. Inst. Math. Appl. Giovanni Sansone, Univ. Firenze, Rept. (1980).Google Scholar
  98. ISAC, G. 2. Complementarity problem and coincidence equations on convex cones. In: Methods of Operations Research (K. Ritter, W. Oettli and R. Henn (Eds.)), Verlagsgruppe Athenäum, Hain, Hanstein, 51 (1984), 23–33.Google Scholar
  99. ISAC, G. 3. Nonlinear complementarity problem and Galerkin method. J. Math. Anal. Appl. 108 Nr. 2 (1985), 5663–574MathSciNetCrossRefGoogle Scholar
  100. ISAC, G. 4. On implicit complementarity problem in Hilbert spaces. Bull. Austr. Math. Soc. 32 Nr. 2 (1985), 251–260.MathSciNetCrossRefGoogle Scholar
  101. ISAC, G. 5. Complementarity problem and coincidence equations on convex cones. Boll. Un. Mat. Ital. (6), 5–1B (1986)925–943.Google Scholar
  102. ISAC, G. 6. Problèmes de complémentarité. (En dimension infinie). Mini-cours. Publica-tions du Dép. de Math. et Informatique Univ. de Limoges (France) (1985).Google Scholar
  103. ISAC, G. 7. Fixed point theory and complementarity problems in Hilbert spaces. Bull. Austr. Math. Soc. 36 Nr. 2 (1987), 295–310.MathSciNetCrossRefGoogle Scholar
  104. ISAC, G. 8. Fixed point theory, coincidence equations on convex cones and complemen-tarity problem. Contemporary Math. 72, (1988). 139–155.MathSciNetCrossRefGoogle Scholar
  105. ISAC, G. 9. On some generalization of Karamardian’s theorem on the complementarity problem. Boll. U.M.I. (7) 2-B (1988), 323–332.Google Scholar
  106. ISAC, G. 10. The numerical range theory and boundedness of solutions of the complementarity problem. J Math. Anal. Appi. 143 Nr. 1 (1989), 235–251.MathSciNetCrossRefGoogle Scholar
  107. ISAC, G. 11. A special variational inequality and the implicit complementarity problem. J. Fac. Sci. Univ. Tokyo Sect. Ia, Math. 37 (1990), 109–127.MathSciNetMATHGoogle Scholar
  108. ISAC, G. 12. Iterative methods for the general order complementarity problem. In: Approximation Theory, Spline Functions and Applications, (S. P. Singh (Ed.)), Kluwer Academic Publisher (1992), 365–380.CrossRefGoogle Scholar
  109. ISAC, G. 13. Complementarity Problems. Lecture Notes in Mathematics Nr. 1528, Springer-Verlag (1992).MATHGoogle Scholar
  110. ISAC, G. 14. Fixed point theorems on convex cones, generalized pseudo-contractive mappings and the complementarity problem. Bull. Institute Math. Academia Sinica 23 Nr. 1 (1995), 21–35.MathSciNetMATHGoogle Scholar
  111. ISAC, G. 15. The fold complementarity problem and the order complementarity problem. Topological Meth. Nonlinear Anal. 8 (1996), 343–358.MathSciNetMATHGoogle Scholar
  112. ISAC, G. 16. Exceptional families of elements for k-set fields in Hilbert spaces and complementarity theory. In: Proceed. International Conf. Opt. Tech. Appl. Icota’98, Perth Australia, 1135–1143.Google Scholar
  113. ISAC, G., BULAVSKI, V. and KALASHNIKOV, V. 1. Exceptional families, topological degree and complementarity problems. J. Global Opt. 10 (1997), 207–225.MathSciNetMATHCrossRefGoogle Scholar
  114. ISAC, G. and CARBONE, A. 1. Exceptional families of elements for continuous functions. Some applications to complementarity theory. Forthcoming: J. Global Opt.Google Scholar
  115. ISAC, G. and GOELEVEN, D. 1. Existence theorem for the implicit complementarity problem. International J. Math. and Math. Sci. 16 Nr. 1 (1993), 67–74.MathSciNetMATHCrossRefGoogle Scholar
  116. ISAC, G. and GOELEVEN, D. 2. The implicit general order complementarity problem, models and iterative methods. Annals of Oper. Res. 44 (1993), 63–92.MathSciNetMATHCrossRefGoogle Scholar
  117. ISAC, G. and GOWDA, M. S. 1. Operators of class (S) 1 +, Altman’s condition and the complementarity problem. J. Fac. Sci. Univ. Tokio Sect. Ia Math. 40 (1993), 1–16.MathSciNetMATHGoogle Scholar
  118. ISAC, G. and KOSTREVA, M. M. 1. The generalized order complementarity problem. J. Opt. Theory Appl. 71 Nr. 3 (1991), 517–534.MathSciNetMATHCrossRefGoogle Scholar
  119. ISAC, G. and KOSTREVA, M. M. 2. Kneser’s theorem and multivalued generalized order complementarity problem. Appl. Math. Lett. 4 Nr. 6 (1991), 81–85.MathSciNetMATHCrossRefGoogle Scholar
  120. ISAC, G. and KOSTREVA, M. M. 3. The implicit generalized order complementarity problem and Leontief’s input -output model. Applicationes Mathematicae 24 Nr. 2 (1996), 113–125.MathSciNetMATHGoogle Scholar
  121. ISAC, G., KOSTREVA, M. M. and POLYASHUK, M. 1. Relational complementarity problem. Preprint (1998)Google Scholar
  122. ISAC, G., KOSTREVA, M. M. and WIECEK, M. M. 1. Multiple-objective approximation offeasible but unsolvable linear comple-mentarity problem. J. Opt. Theory Appl., 86 Nr. 2 (1995), 389–404.MathSciNetMATHCrossRefGoogle Scholar
  123. ISAC, G. and OBUCHOWSKA, W. T. 1. Functions without exceptional family of elements and complementarity problems. To appear in: J. Opt. Theory Appl. 99, Nr. 1(1998). 147–163.MathSciNetMATHCrossRefGoogle Scholar
  124. ISAC, G. and ThéRA, M. 1. A variational principle. Application to the nonlinear comnplementarity problem. In: Nonlinear and Convex Analysis (Proceedings in honor of Ky Fan). (B. L. Lin and S. Simons (Eds.)), Marcel Dekker (1987), 127–145.Google Scholar
  125. ISAC, G. and ThéRA, M. 2. Complementarity problem and the existence ofthe post-critical equilibrium state of a thin elastic plate. J. Optim. Theory Appl. 58 Nr. 2 (1988), 241–257.MathSciNetMATHCrossRefGoogle Scholar
  126. KANEKO, I. 1. The nonlinear complementarity problem. Term Paper, Or 340 C, Department of Operations Research, Stanford University, Stanford, Ca. (1973).Google Scholar
  127. KANEKO, I. 2. Parametric Complementarity Problem. Ph. D. Thesis, Stanford University, Stanford, California, (1975).Google Scholar
  128. KANEKO, I. 3. Isotone solutions of parametric linear complementarity problems. Math. Programming 12 (1977), 48–59.MathSciNetMATHCrossRefGoogle Scholar
  129. KANEKO, I. 4. A parametric linear complementarity problem involving derivatives. Math. Programming 15 (1978), 146–154.MathSciNetMATHCrossRefGoogle Scholar
  130. KANEKO, I. 5. A linear complementarity problem with an n by 2n P-matrices. Math. Programming Study 7 (1978), 120–141.MATHCrossRefGoogle Scholar
  131. KANEKO, I. 6.A maximization problem related to parametric linear complementarity. Siam Journal Control Opt. 16, Nr. 1 (1978), 41–55.MATHCrossRefGoogle Scholar
  132. KANEKO, I. 7. A maximization problem related to linear complementarity. Math. Programming 15 Nr.2 (1978), 146–154.MathSciNetMATHCrossRefGoogle Scholar
  133. KANEKO, I. 8. Linear Complementarity problems and characterizations of Minkowski matrices. Linear Algebra and its Appl., 20 (1978), 113–130.CrossRefGoogle Scholar
  134. KANEKO, I. 9. The number of solutions of a class of linear complementarity problems. Math. Programming, 17 (1979), 104–105.MathSciNetMATHCrossRefGoogle Scholar
  135. KANEKO, I. 10. A reduction theorem for the linear complementarity problem with a certain patterned matrix. Linear Algebra and its Appl. 21 (1978), 13–34.MATHCrossRefGoogle Scholar
  136. KANEKO, I. 11. O some recent engineering applications of complementarity problems. Math. Programming Study, 17 (1982), 111–125.MATHCrossRefGoogle Scholar
  137. KANEKO, I. 12. Complete solutions for a class of elastic-plastic structures. Comput. Methods Appl. Mech Engineering, 21 (1980), 193–209.MATHGoogle Scholar
  138. KANEKO, I. 13. Piecewise linear elastic-plastic analysis. International J. Num. Methods in Engineering 14 (1979), 757–767.MATHCrossRefGoogle Scholar
  139. KARAMARDIAN, S. 1. The nonlinear complementarity problem with applications. Part 1. J. Opt. Theory Appl. 4 (1969), 87–98.MathSciNetMATHCrossRefGoogle Scholar
  140. KARAMARDIAN, S. 2. The nonlinear complementarity problem with applications. Part 2. J. Opt. Theory Appl. 4 (1969), 167–181MathSciNetMATHCrossRefGoogle Scholar
  141. KARAMARDIAN, S. 3. Generalized complementarity problem. J. Opt. Theory Appl. 8(1971), 161–168.MathSciNetMATHCrossRefGoogle Scholar
  142. KARAMARDIAN, S. 4. The complementaritv problem. Math. Programming 2 (1972), 107–129.MathSciNetMATHCrossRefGoogle Scholar
  143. KARAMARDIAN, S. 5. Complementarity problems over cones with monotone and pseudo-monotone maps. J. Opt. Theory Appl. 18 (1976), 445–454.MathSciNetMATHCrossRefGoogle Scholar
  144. KARAMARDIAN, S. 6. An existence theorem for the comnplementarity problem. J. Opt. Theory Appl. 19 (1976), 227–232.MathSciNetMATHCrossRefGoogle Scholar
  145. KOJIMA, M. 1. Computational methods for solving nonlinear complementarity problems. Keio Engineering Report 27 (1974), 1–41.MathSciNetGoogle Scholar
  146. KOJIMA, M. 2. A unification of the existence theorems of the nonlinear complementarity problem. Math. Programming 9 (1975), 257–277.MathSciNetMATHCrossRefGoogle Scholar
  147. KOJIMA, M. 3. Studies on piecewise-linear approximations of piecewise-C1 mappings in fixed points and complementarity theory. Math. Oper. Research 3 (1978), 17–36.MathSciNetMATHCrossRefGoogle Scholar
  148. KOJIMA, M. 4. A complementarity pivoting approach to parametric nonlinear programming. Math. Oper. Res. 4 Nr. 4 (1979), 464–477.MathSciNetMATHCrossRefGoogle Scholar
  149. KOJIMA, M., MIZUNO, S. and NOMA, T. 1. A new continuation method for complementarity problems with uniform P-functions. Math. Programming 43 (1989), 107–113.MathSciNetMATHCrossRefGoogle Scholar
  150. KOJIMA, M., MIZUNO, S. and NOMA, T. 2. Limiting behavior of trajectories generated by a continuation method for monotone complementarity problems. Math. Oper. Research 15 (1990), 662–675.MathSciNetMATHCrossRefGoogle Scholar
  151. KOJIMA, M., NISHINO, H. and SEKINE, T. 1. An extension of Lemke’s method to the piecewise linear complementarity method. Siam J. Appl. Math., 31 (1976), 600–613.MathSciNetMATHGoogle Scholar
  152. KOJIMA, M. and SAIGAL, R. 1. On the number of solutions to a class of linear complementarity problems. Math. Programming, 17 (1979), 136–139.MathSciNetMATHCrossRefGoogle Scholar
  153. KOJIMA, M. and SAIGAL, R. 2. On the number ofsolutions to a class of complementarity problems. Math. Programming, 21 (1981), 190–203.MathSciNetMATHCrossRefGoogle Scholar
  154. KOSTREVA, M. M. 1. Direct Algorithms for Complementarity Problems. Rensselaer Polytechnic Institute, Troy, Ph. D. Dissertation, New York, (1976).Google Scholar
  155. KOSTREVA, M. M. 2. Block pivot methods for solving the complementarity problem. Linear Algebra Appl. 21 (1978), 207–215.MathSciNetMATHCrossRefGoogle Scholar
  156. KOSTREVA, M. M. 3. Cycling in linear complementarity problems. Math. Programming 16 (1979), 127–130.MathSciNetMATHCrossRefGoogle Scholar
  157. KOSTREVA, M. M. 4. Finite test sets and P-matrices. Proc. Amer. Math. Soc. 84 (1982), 104–105.MathSciNetMATHGoogle Scholar
  158. KOSTREVA, M. M. 5. Elasto-hydrodynamic lubrication: a nonlinear complementarity problem. International J. Numerical Meth. in Fluids, 4 (1984), 377–397.MathSciNetMATHCrossRefGoogle Scholar
  159. KOSTREVA, M. M. 6. Recent results on complementarity models for engineering and economics. Infor. 28 (1990), 324–334.MATHGoogle Scholar
  160. LEMKE, C. E. 1. Bimatrix equilibrium points and mathematical programming. Management Science, 11 (1965), 681–689.MathSciNetMATHGoogle Scholar
  161. LEMKE, C. E. 2. On complementarity pivot theory. In: Mathematics of Decision Sciences, Part 1, (G. B. Dantzig, A. F. Veinott, Jr. (Eds.)) Ams, Providence, Rhode Island, (1968), 95–114.Google Scholar
  162. LEMKE, C. E. 3. Recent results on complementarity problems. In: Nonlinear Programming, (J. B. Rosen, O. L. Mangasarian and K. Ritter, (Eds.)), Academic Press. New York (1970), 349–384.Google Scholar
  163. LEMKE, C. E. 4. Some pivot schemes for the linear complementarity problem. Math. Programming Study 7 (1978), 15–35.MathSciNetMATHCrossRefGoogle Scholar
  164. LEMKE, C. E. 5. A brief survey of complementarity theory. In: Constructive Approaches to Mathematical Models, (C. V. Coffman and G. J. Fix (Eds.)), Academic Press, New York, (1979).Google Scholar
  165. LEMKE, C. E. 6. A survey of complementarity theory. In: Variational Inequalities and Complementarity Problems, (R. W. Cottle, F. Giannessi and J. L. Lions (Eds.)), John Wiley & Sons, (1980), 213–239.Google Scholar
  166. LEMKE, C. E. and HOWSON, J. T. 1. Equilibrium points of bimatrix games. Siam J. Appl. Math. 12 (1964), 413–423.MathSciNetMATHCrossRefGoogle Scholar
  167. MAIER, G. 1. A matrix structural theory of piecewise-linear elastoplasticity with interacting yield-planes. Meccanica 5 (1970), 54–66.MATHCrossRefGoogle Scholar
  168. MAIER, G. 2. Problem on parametric linear complementarity problem. Siam Rev., 14 Nr. 2 (1972), 364–365.MathSciNetCrossRefGoogle Scholar
  169. MAIER, G., ANDREUZZI, F., GIANNESSI, F., JURINA, L. and TADDEI, F. 1. Unilateral contact, elastoplasticity and complementarity with references to offshore pipeline design. Comput. Methods Appl. Mech. and Engineering, 17/18 (1979), 469–495.CrossRefGoogle Scholar
  170. MANDELBAUM, A. 1. The dynamic complementarity problem. Preprint, Graduate School of Business, Stanford University, Stanford, Ca. 94305, Usa (1990).Google Scholar
  171. MANGASARIAN, O. L. 1. Linear complementarity problems solvable by a single linear program. Math. Programming 10 (1976), 263–270.MathSciNetMATHCrossRefGoogle Scholar
  172. MANGASARIAN, O. L. 2. Solution of linear complementarity problems by linear programming. In: Numerical Analysis, (Gi. W. Watson, (Ed.)), Lecture Notes in Mathematics, Nr. 506, Springer-Verlag (1976), 166–175.CrossRefGoogle Scholar
  173. MANGASARIAN, O. L. 3. Equivalence of the complementarity problem to a system of nonlinear equations. Siam J. Appl. Math., 31 (1976), 89–92.MathSciNetMATHCrossRefGoogle Scholar
  174. MANGASARIAN, O. L. 4. Solution of symmetric linear complementarity problems by iterative methods. J. Opt. Theory Appl. 22 (1977), 465–485.MathSciNetMATHCrossRefGoogle Scholar
  175. MANGASARIAN, O. L. 5. Characterization of linear complementarity problems as linear programs. Math. Programming Study, 7 (1978), 74–87.MathSciNetMATHCrossRefGoogle Scholar
  176. MANGASARIAN, O. L. 6. Generalized linear complementarity problems as linear programs. In: Methods of Operations Research, (W. Oettli and F. Steffens (Eds.)), 31 (1979), 393–402.Google Scholar
  177. MANGASARIAN, O. L. 7. Simplified characterizations of linear complementarty problems solvable as linear programs. Math. Oper. Research 4 (1979), 268–273.MathSciNetMATHCrossRefGoogle Scholar
  178. MANGASARIAN, O. L. 8. Locally unique solutions of quadratic programs. linear and nonlinear complementarity problems. Math. Programming 19 (1980), 200–212.MathSciNetMATHCrossRefGoogle Scholar
  179. MANGASARIAN, O. L. 9. Characterization of bounded solutions of linear complementarity problems. Math. Programming Study. 19 (1982), 153–166.MathSciNetCrossRefGoogle Scholar
  180. MANGASARIAN, O. L. 10. Simple computable bounds for solutions of linear complementarity problems and linear programs. Math. Programming Study, 2 5 (1985), 1–12.MathSciNetCrossRefGoogle Scholar
  181. MANGASARIAN, O. L. 11. Error bounds for nondegenerate monotone linear complementarity problems. Math. Programming, Series B, 48 (1990), 437–445.MathSciNetMATHCrossRefGoogle Scholar
  182. MANGASARIAN, O. L. 12. Least norm solution of non-monotone linear complementarity problems. In: Functional Analysis, Optimization and Mathematical Economics, (L. J. Leifman, (Ed.)), Oxford University Press, Oxford (1990), 217–221.Google Scholar
  183. MANGASARIAN, O. L. 13. Convergence of iterates of an inexact matrix splitting algorithm for the symmetric monotone linear complementarity problem. Siam J. Opt. 1 (1991), 114–122.MathSciNetMATHCrossRefGoogle Scholar
  184. MANGASARIAN, O. L. and PANG, J. S. 1. The extended linear complementarity problem. Siam J. Matrix Analysis Appl. 16 (12) (1995), 359–368.MathSciNetMATHCrossRefGoogle Scholar
  185. MCLINDEN, L. 1. The complementarity problem for maximal monotone multifunctions. In: Variational Inequalities and Complementarity Problems, (R. W. Cottle, F. Giannessi and J. L. Lions (Eds.)), John Wiley & Sons, (1980), 251–270.Google Scholar
  186. MCLINDEN, L. 2. An analogue ofMoreau’s proximation theorem with application to the nonlinear complementarity problem. Pacific J. Math. 88 Nr. 1, (1980) 101–161.MathSciNetMATHCrossRefGoogle Scholar
  187. MEISTER, H. 1. A parametric approach to complementarity theory. J. Math. Anal. Appl. 101, (1984), 64–77.MathSciNetMATHCrossRefGoogle Scholar
  188. MEGIDDO, N. 1. On monotonicity in parametric linear complementarity problems. Math. Programming, 12 (1966), 60–66.MathSciNetCrossRefGoogle Scholar
  189. MEGIDDO, N. 2. A monotone complementarity problem with feasible solutions but no complementarity solutions. Math. Programming Study, 12 Nr. 1 (1977), 131–132.MathSciNetMATHCrossRefGoogle Scholar
  190. MEGIDDO, N. 3. On the parametric nonlinear complementarity problem. Math. Programming Study 7 (1978), 142–150.MathSciNetMATHCrossRefGoogle Scholar
  191. MEGIDDO, N. and KOJIMA, M. 1. On the existence and uniqueness of solutions in nonlinear complementarity theory. Math. Programming 12 (1977), 110–130.MathSciNetMATHCrossRefGoogle Scholar
  192. MOHAN, S. R. and NEOGY, S. K. 1. Algorithms for the generalized linear complementarity problem with a vertical block Z-matrix. Siam J. Optimization 6, Nr. 4 (1996), 994–1006.MathSciNetMATHCrossRefGoogle Scholar
  193. MOHAN, S. R., NEOGY, S. K. and SRIDHAR, R. 1. The generalized linear complementarity problem revisited. Math. Program-ming 74 (1996), 197–218.MathSciNetMATHGoogle Scholar
  194. MONTEIRO, R. D. C. and PANG, J. S. 1. On two interior-point mappings for nonlinear semidefinite complementarity problems. (Preprint) (1966), School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332–0205.Google Scholar
  195. MORé, J. J. 1. Classes of functions and feasibility conditions in nonlinear complementarity problems. Math. Programming 6, (1974), 327–338.MathSciNetMATHCrossRefGoogle Scholar
  196. MORé, J. J. 2. Coercivity conditions in nonlinear complementarity problems. Siam Rev. 16, Nr. 1 (1974), 1–16.MathSciNetMATHCrossRefGoogle Scholar
  197. MORé, J. J. and RHEINBOLDT, W. 1. On P-and S-functions and related classes of n-dimensional nonlinear mappings. Linear Algebra and Appl. 6 (1973), 45–68.MathSciNetMATHCrossRefGoogle Scholar
  198. MOSCO, U. 1.On some non-linear quasi-variational inequalities and implicit complemen-tarity problems in stochastic control theory. In: Variational Inequalities and Complementarity Problems. Theory and Applications. (R. W. Cottle, F. Giannessi and J. L. Lions (Eds.)), John Wiley & Sons (1980), 271–283.Google Scholar
  199. MOSCO, U. and SCARPINI, F. 1. Complementarity systems and approximation of variational inequalities. Rairo Recherche Oper. (Analyse Numer.), (1975), 83–104.Google Scholar
  200. MURTY, K. G. 1. On the Number of Solutions to the Complementarity Quadratic Programming Problem. Doctoral Dissertation, Engineering Science, University of California, Berkeley, (1968).Google Scholar
  201. MURTY, K. G. 2. On the characterization ofP-matrices. Siam J. Appl. Math. 20 (3), (1971), 378–384.MATHGoogle Scholar
  202. MURTY, K. G. 3. On the number of solutions to the complementarity problem and the spanning properties of complementarity cones. Linear Algebra Appl. 5 (1972) 65–108.MATHCrossRefGoogle Scholar
  203. MURTY, K. G. 4. On the Bard-type scheme for solving the complementarity problem. Opsearch 11 (1974), 123–130.MathSciNetGoogle Scholar
  204. MURTY, K. G. 5. On the linear complementarity problem. Oper. Research Verfahren 31 (1978), 425–439.Google Scholar
  205. MURTY, K. G. 6. Computational complexity of complementarity pivot methods. Math. Program-ming Study 7 (1978), 61–73 .MATHCrossRefGoogle Scholar
  206. MURTY, K. G. 7. Linear Complementarity, Linear and Nonlinear Programming. Heldermann Verlag, Berlin (1988).MATHGoogle Scholar
  207. OH, K. P. 1. The formulation of the mixed lubrication problem as a generalized nonlinear complementarity problem. J. Tribology 108 (1986), 598–604.CrossRefGoogle Scholar
  208. PANG, J. S. 1. Least Element Complementarity Theory. Ph. D. Thesis, Department of Opera-tions Research, Stanford University, Stanford, California (1976).Google Scholar
  209. PANG, J. S. 2.A note on an open problem in linear complementarity. Math. Programming 13 (1977), 360–363.MathSciNetMATHCrossRefGoogle Scholar
  210. PANG, J. S. 3. On cone ordering and the linear complementarity problem. Linear Algebra Appl. 22 (1978), 267–281.MathSciNetMATHCrossRefGoogle Scholar
  211. PANG, J. S. 4. On a class of least-element linear complementarity problems. Math. Programming 16 (1979), 111–126.MathSciNetMATHCrossRefGoogle Scholar
  212. PANG, J. S. 5. On Q-matrices. Math. Programming 17 (1979), 243–247.MathSciNetMATHCrossRefGoogle Scholar
  213. PANG, J. S. 6. Hidden Z-matrices with positive principal minors. Linear Algebra Appl. 23 (1979), 201–215.MathSciNetMATHCrossRefGoogle Scholar
  214. PANG, J. S. 7. A parametric linear complementarity technique for optimal portfolio selection with a risk-free asset. Oper. Research 28 (1980), 927–941.MATHCrossRefGoogle Scholar
  215. PANG, J. S. 8. A unification of two classes of Q-matrices. Math. Programming 20 (1981), 348–352.MathSciNetMATHCrossRefGoogle Scholar
  216. PANG, J. S. 9. The implicit complementarity problem. In: Nonlinear Programming 4, (Mangassarian, O. L., Meyer R. R. and Robinson S. M., (Eds.)), Academic Press, New York (1981), 487–518.Google Scholar
  217. PU J. S. 10. On the convergence of a basic iterative method for the implicit complementarity problem. J. Opt. Theory Appl. 37 (1982), 149–162.MATHCrossRefGoogle Scholar
  218. PANG, J. S. 11. Necessary and sufficient conditions for the convergence of iterative methods for the linear complementarity problem. J. Opt. Theory Appl. 42 (1984), 1–17.MATHCrossRefGoogle Scholar
  219. PANG, J. S. 12. More results on the convergence of iterative methods for the symmetric linear complementarity problems. J. Opt. Theory Appl. 49 (1986), 107–134.MATHCrossRefGoogle Scholar
  220. U. S. 13. Inexact Newton methods for the nonlinear complementarity problem. Math. Programming 36 (1986), 54–71.MathSciNetMATHCrossRefGoogle Scholar
  221. PANG, J. S. 14. Two characterization theorems in complementarity theory. Oper. Research Letters 7 (1988), 27–31.MATHCrossRefGoogle Scholar
  222. PANG, J. S. 15. Iterative descent algorithms for a row sufficient linear complementarity problem. Siam J. Matrix Anal. Appl. 12 (1991), 611–624.MathSciNetMATHCrossRefGoogle Scholar
  223. PANG, J. S. 16. A B-differentiable equation based, globally and locally quadratically convergent algorithm for nonlinear programs, complementarity and variational inequality problems. Math. Programming 51 (1991), 101–132.MathSciNetMATHCrossRefGoogle Scholar
  224. PANG, J. S.17. Complementarity problems. In: Handbook in Global Optimization, (Horst R. and Pardalos P. (Eds.)), Kluwer Academic Publishers, Boston (1994), 271–338.Google Scholar
  225. PETERSON, W. P. 1. Diffusion Approximations for Networks of Queues with Multiple Customer Types. Ph. D. Thesis, Dept. of Operations Research, Stanford University, Ca. (1985).Google Scholar
  226. REIMAN, M. I. 1. Open queuing networks in heavy traffic. Math. Oper. Research 9 (1984), 441–458.MathSciNetMATHCrossRefGoogle Scholar
  227. SAIGAL, R. 1. A note on a class of linear complementarity problem. Opsearch 7 (1970), 175–183.MathSciNetGoogle Scholar
  228. SAIGAL, R. 2 Lemke’s algorithm and a special linear complementarity problem. Opsearch 8 (1971), 201–208.MathSciNetGoogle Scholar
  229. SAIGAL, R. 3. On the class of complementarity cones and Lemke’s algorithm. Siam J. Appl. Math. 23 Nr. 1 (1972). 46–60.MathSciNetMATHGoogle Scholar
  230. SAIGAL, R. 4. A characterization of the constant parity property of the number of solutions to the linear complementaritv problem. Siam J. Appl. Math. 23 (1972), 40–45.MathSciNetMATHGoogle Scholar
  231. SAIGAL, R. 5. Extension of the generalized complementarity problem. Math. Oper. Research 1 Nr. 3 (1976), 260–266.MathSciNetMATHCrossRefGoogle Scholar
  232. SUN, M. 1. Monotonicity of Mangasarian’s iterative algorithm for generalized linear complementarity problems. J. Math. Anal. Appl. 144 (1989), 474–485.MathSciNetMATHCrossRefGoogle Scholar
  233. SZANC, B. P. 1. The Generalized Complementarity Problem. Ph. D. Thesis, Rensselaer Polytechnic Institute, Troy, N. Y. (1989).Google Scholar
  234. SZNAJDER, R. 1. Degree Theoretic Analysis of the Vertical and Horizontal Linear Complemen-tarity Problem. Ph. D. Thesis, University of Maryland (1994).Google Scholar
  235. SZNAJDER, R. and GOWDA, M. S. 1. Generalizations of P 0 - and P-properties; extended vertical and horizontal linear complementarity problems. Linear Algebra and its Application. 223/224, (1995), 695–715.Google Scholar
  236. TAMIR, A. 1. Minimality and complementarity properties associated with Z-functions and M-functions. Math. Programming, 7 (1974), 17–31.MathSciNetMATHCrossRefGoogle Scholar
  237. VESCAN, R. T. 1. Un problème variationnel implicite faible. C. R. Acad. Sci. Paris, t. 299, Serie A Nr. 14 (1984), 655–658.MathSciNetGoogle Scholar
  238. VESCAN, R. T. 2. A weak implicit variational inequality. Preprint, Al. I. Cuza University. Iasi (Romania) (1994)Google Scholar
  239. WALRAS, L. 1. Elements of Pure Economics. Allen and Unwin, London (1954).Google Scholar
  240. WENECOUR, M. 1. A Production Network Model and its Diffusion Limit. Ph. D. Thesis, Statistics Department, Stanford University, Ca. (1982)Google Scholar
  241. WINTGEN, G. 1. Indifferente optimierungs probleme. In: Beitrag zur Internationalen Tagung. Mathematik und Kybernetik in der Okonomie, Berlin (1964), Konferenz-protocoll, Teil Ii, (Akademie Verlag, Berlin), 3–6.Google Scholar
  242. YANG, P. 1. Pathwise Solution for a Class ofLinear Stochastic Systems. Ph. D. Thesis, Department of Operations Research, Stanford University , Ca. (1988).Google Scholar
  243. YE, Y. 1. A fully polynomial-time approximation algorithm for computing a stationary point of the general linear complementarity problem. Math. Oper. Research 18 (2), (1993), 334–345.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • George Isac
    • 1
  1. 1.Department of Mathematics and Computer ScienceRoyal Military College of CanadaKingstonCanada

Personalised recommendations