Advertisement

Endoluminal Radiation Therapy

  • Rudolf R. Tutein Nolthenius
  • Frans L. Moll

Abstract

Percutaneous transluminal angioplasty (PTA) and percutaneous transluminal coronary angioplasty (PTCA) are generally accepted and used as a minimal invasive therapeutic intervention for treatment of symptomatic stenoses of the central, peripheral, and coronary arteries. Clinical success and vessel patencies after PTCA are dependent on the pathology and type of lesion and the anatomic location.1–3 Several mechanisms are responsible for the success after PTA. Recoil, remodeling, and restenosis are factors responsible for reocclusions, but it is not known which factor is most influential. Recoil and remodeling might be prevented or reduced by the use of stents. Many attempts to prevent restenosis have failed.4–12 An important factor in restenosis is neointimal hyperplasia (NIH). As with other vascular interventions the vessel wall becomes traumatized after PTA. This trauma initiates a cascade of reactions in the vessel wall, the mechanism of which is not completely understood. In addition to smooth muscle cell proliferation with migration of cells from media across the internal elastic lamina and formation of an intimal mass of actively proliferating cells,13–18 there seems to be an important role for adventitial responses as well.19–27 Radiation therapy has been used successfully in several benign hyperproliferative diseases to prevent a proliferative response,28–34 so it was conjectured to be beneficial in reducing NIH as well.

Keywords

Radiat Oncol Biol Phys Intimal Hyperplasia Superficial Femoral Artery Neointimal Hyperplasia Porcine Coronary Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hunink MG, Donaldson MC, Meyerovitz MF et al: Risks and benefits of femoropopliteal percutaneous balloon angioplasty, J Vase Surg 17: 183–192, 1993.CrossRefGoogle Scholar
  2. 2.
    Johnston KW: Femoral and popliteal arteries: reanalysis of results of balloon angioplasty, Radiology 183: 767–771, 1992.PubMedGoogle Scholar
  3. 3.
    Murray RRJ, Hewes RC, White RIJ et al: Longsegment femoropopliteal stenoses: is angioplasty a boon or a bust? Radiology 162: 473–476, 1987.PubMedGoogle Scholar
  4. 4.
    Chesebro JH, Webster MWI, Reeder GS et al: Coronary angioplasty antiplatelet therapy induces acute complications but not restenosis [abstract], Circulation 80 (suppl 2): 64, 1989.Google Scholar
  5. 5.
    Corcos T, David PR, Val PG et al: Failure of dil-tiazem to prevent restenosis after PTCA, Am Heart J 109: 926–931, 1985.PubMedCrossRefGoogle Scholar
  6. 6.
    Dehmer GJ, Popma JJ, Egerton K et al: Reduction in the rate of early restenosis after coronary angioplasty by a diet supplemented with w-3 fatty acids, N Engl J Med 319: 733–740, 1988.PubMedCrossRefGoogle Scholar
  7. 7.
    Ellis SG, Roubin GS, Wilentz IJ et al: Effect of 18 to 24 hour heparin administered for prevention of restenosis after uncomplicated coronary angioplasty, Am Heart J 117: 777–782, 1989.PubMedCrossRefGoogle Scholar
  8. 8.
    Raizner AE, Hollman J, Abukhalil J et al: Ciprostene for restenosis revisited: quantitative analysis of angiograms [abstract], J Am Coll Cardiol 21: 321A, 1993.Google Scholar
  9. 9.
    Reis GJ, Boucher TM, Slipperly ME et al: Randomized trial of fish oil for the prevention of restenosis after coronary angioplasty, Lancet 2: 177–181, 1989.PubMedCrossRefGoogle Scholar
  10. 10.
    Schwartz L, Bourassa MG, Lesperance J et al: Aspirin and dipyridamole in the prevention of restenosis after PTCA, N Engl J Med 318: 1714–1719, 1988.PubMedCrossRefGoogle Scholar
  11. 11.
    Thornton MA, Gruentzig AR, Hollman J et al: Coumadin and aspirin in the prevention of recurrence after transluminal coronary angioplasty: a randomized study, Circulation 69: 721–727, 1984.PubMedCrossRefGoogle Scholar
  12. 12.
    Whitworth HB, Roubin GS, Hollman J et al: Effects of nifedipine on recurrent stenosis after PTCA, Am Coll Cardiol 8: 1271–1276, 1986.CrossRefGoogle Scholar
  13. 13.
    Clowes AW, Reidy MA, Clowes MM: Kinetics of cellular proliferation after arterial injury: smooth muscle growth in the absence of endothelium, Lab Invest 49: 327–333, 1983.PubMedGoogle Scholar
  14. 14.
    Reidy MA, Fingerele J, Lindner V: Factors controlling the development of arterial lesion after injury, Circulation 86: 1143–1146, 1992.Google Scholar
  15. 15.
    Schwartz RS, Murphy JG, Edwards WD et al: Restenosis after balloon angioplasty: a practical proliferative model in porcine coronary arteries, Circulation 82: 2190–2200, 1990.PubMedCrossRefGoogle Scholar
  16. 16.
    Schwartz RS, Huber KC, Murphy JG et al: Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model, J Am Coll Cardiol 19: 267–274, 1992.PubMedCrossRefGoogle Scholar
  17. 17.
    Karas SP, Gravanis MB, Santoian EC et al: Coronary intimal proliferation after balloon injury and stenting in swine: an animal model of restenosis, J Am Coll Cardiol 20: 467–474, 1992.PubMedCrossRefGoogle Scholar
  18. 18.
    Schneider JE, Berk BC, Gravanis MB et al: Probucol decreases neointimal formation in a swine model of coronary artery balloon injury: a possible role for antioxidants in restenosis, Circulation 88: 628–637, 1993.PubMedCrossRefGoogle Scholar
  19. 19.
    Scott NA, Ross C, Subramanian R et al: Characterization of the cellular response to coronary injury [abstract], Circulation 90: 1392, 1994.CrossRefGoogle Scholar
  20. 20.
    Scott NA, Martin F, Simonet L et al: Contribution of adventitial myofibroblasts to vascular remodelling and lesion formation after experimental angioplasty in pig coronary arteries [abstract], FASEB J 9: A845, 1995.Google Scholar
  21. 21.
    Wilcox JN, Waksman R, King SB: The role of the adventitia in the arterial response to angioplasty: the effect of intravascular radiation, Int J Radiat Oncol Biol Phys 36: 789–796, 1996.PubMedCrossRefGoogle Scholar
  22. 22.
    Scott NA, Cipolla GD, Ross CE et al: Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries, Circulation 93: 2178–2187, 1996.PubMedCrossRefGoogle Scholar
  23. 23.
    Booth RF, Martin JF, Honey AC et al: Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulation, Atherosclerosis 76: 257–268, 1989.PubMedCrossRefGoogle Scholar
  24. 24.
    Barker SG, Tilling LC, Miller GC et al: The adventitia and atherogenesis: removal initiates intimal proliferation in the rabbit which regresses on generation of a “neoadventitia,” Atherosclerosis 105: 131–144, 1994.PubMedCrossRefGoogle Scholar
  25. 25.
    Chignier E, Eloy R, Hue A et al: Adventitial resection of small artery provokes endothelial loss and intimal hyperplasia, Surg Gynecol Obstet 163: 327–334, 1986.PubMedGoogle Scholar
  26. 26.
    Marmur JD, Rossikhina M, Guha A et al: Tissue factor is rapidly induced in arterial smooth muscle after balloon injury, J Clin Invest 91: 2253–2259, 1993.PubMedCrossRefGoogle Scholar
  27. 27.
    Rakugi H, Jacob HJ, Krieger JE et al: Vascular injury induces angiotensinogen gene expression in the media and neointima, Circulation 87: 283–290, 1993.PubMedCrossRefGoogle Scholar
  28. 28.
    Van den Brenk HA, Minty CC: Radiation in the management of keloids and hypertrofic scar, Br J Surg 47: 595–605, 1961.CrossRefGoogle Scholar
  29. 29.
    Van den Brenk HA: Results of profylactic postoperative irradiation in 1300 cases of pterygium, AJR 103: 723, 1968.Google Scholar
  30. 30.
    Finger PT, Berson A, Sherr D et al: Radiation therapy for subretinal neovascularization, Ophthalmology 103: 878–889, 1996.PubMedGoogle Scholar
  31. 31.
    Grillo HC, Potsaid MS: Studies in wound healing, Ann of Surg 154: 741–750, 1961.Google Scholar
  32. 32.
    Inalsingh CHA: An experience in treating five hundred and one patients with keloids, Johns Hopkins Med J 134: 284–290, 1974.PubMedGoogle Scholar
  33. 33.
    MacLennan I, Keys HM, Evarts CM et al: Usefulness of postoperative hip irradiation in the prevention of heterotopic bone formation in a high risk group of patients, Int J Radiat Oncol Biol Phys 10: 49–53, 1984.PubMedCrossRefGoogle Scholar
  34. 34.
    Nickson JJ, Lawrence W, Rachwalsky L: Roentgen rays and wound healing: fractionated irradiation: experimental study, Surgery 34: 859–862, 1953.PubMedGoogle Scholar
  35. 35.
    Levendag PC, Schmitz PI, Jansen PP et al: Fractionated high dose rate and pulsed dose rate brachytherapy-first clinical experience in squamous cell carcinoma of the tonsillar fossa and soft palate, Int J Radiat Oncol Biol Phys 38: 497–506, 1997.PubMedCrossRefGoogle Scholar
  36. 36.
    Shimotakahara S, Mayberg MR: Gamma irradiation inhibits neointimal hyperplasia in rats after arterial injury, Stroke 25: 424–428, 1994.PubMedCrossRefGoogle Scholar
  37. 37.
    Mayberg MR, Luo Z, London S et al: Radiation inhibition of intimal hyperplasia after arterial injury, Radiat Res 142: 212–220, 1995.PubMedCrossRefGoogle Scholar
  38. 38.
    Schwartz RS, Koval TM, Edwards WD et al: Effect of external beam irradiation on neointimal hyperplasia after experimental coronary artery injury, J Am Coll Cardiol 19: 1106–1113, 1992.PubMedCrossRefGoogle Scholar
  39. 39.
    Waksman R, Robinson KA, Crocker IR et al: Endovascualr low-dose irradiation inhibits neointima formation after coronary artery balloon injury in swine: a possible role for radiation therapy in restenosis prevention, Circulation 91: 1533–1539, 1995.PubMedCrossRefGoogle Scholar
  40. 40.
    Waksman R, Robinson KA, Crocker IR et al: Intracoronary radiation before stent implan-taion inhibits neointima formation in stented porcine coronary arteries, Circulation 92: 1383–1386, 1995.PubMedCrossRefGoogle Scholar
  41. 41.
    Waksman R, Robinson KA, Crocker IR et al: Intracoronary low-dose beta-irradiation inhibits neointima formation after coronary artery balloon injury in the swine restenosis model, Circulation 92: 3025–3031, 1995PubMedCrossRefGoogle Scholar
  42. 42.
    Wiedemann JG, Leavy JA, Amols H et al: Effects of high-dose intracoronary irradiation on vasomotor function and smooth muscle histopathology, Am J Physiol 267:H 125–132, 1994.Google Scholar
  43. 43.
    Wiedermann JG, Marboe C, Amols H et al: Intracoronary irradiation markedly reduces restenosis after balloon angioplasty in a porcine model, J Am Coll Cardiol 23: 1491–1498, 1994.PubMedCrossRefGoogle Scholar
  44. 44.
    Wiedermann JG, Marboe C, Amols H et al: Intracoronary irradiation markedly reduces neointimal proliferation after balloon angioplasty in swine: persistent benefit at 6-month follow-up, J Am Coll Cardiol 25: 1451–1456, 1995.PubMedCrossRefGoogle Scholar
  45. 45.
    Mazur W, Ali MN, Dabhagi SF et al: High dose rate intracoronary radiation suppresses neointimal proliferation in the stented and balloon model of porcine restenosis [abstract], Circulation 90: 652, 1994.Google Scholar
  46. 46.
    Verin V, Popowski Y, Urban P et al: Intraarterial beta irradiation prevents neointimal hyperplasia in a hypercholoesterolemic rabbit restenosis model, Circulation 92:2284–2290, 1995.PubMedCrossRefGoogle Scholar
  47. 47.
    Böttcher HD: Endovascular radioprevention of intimai hyperplasia after percutaneous transluminal angioplasty of peripheral blood vessels, Radiologe 34: 519–524, 1994.PubMedGoogle Scholar
  48. 48.
    Böttcher HD, Schopohl B, Liermann D et al: Endovascular irradiation—a new method to avoid recurrent stenosis after stent implantation in peripheral arteries: technique and preliminary results, Int J Radiat Oncol Biol Phys 29: 183–186, 1994.PubMedCrossRefGoogle Scholar
  49. 49.
    Liermann D, Berkefeld J, Herrmann G et al: Intervention and clinical aspects combined with endovascular irradiation of intimai hyperplasia of the vascular system, Radiologe 34: 524–533, 1994.PubMedGoogle Scholar
  50. 50.
    Liermann D, Böttcher HD: Use of low dose local radiation for treatment of restenosis Presented at the Sixth annnual international symposium on vascular diagnosis and intervention, January 1994, pp 69–71.Google Scholar
  51. 51.
    Liermann D, Böttcher HD, Kollath J et al: Prophylactic endovascular radiotherapy to prevent intimal hyperplasia after stent implantation in femoropopliteal arteries, Cardiovasc Intervent Radiol 17: 12–16, 1994.PubMedCrossRefGoogle Scholar
  52. 52.
    Fischell TA, Bassam KK, Fischeil DR et al: Low-dose beta particle emission from “stent” wire results in complete, localized inhibition of smooth muscle cell proliferation, Circulation 90: 2956–2963, 1994.PubMedCrossRefGoogle Scholar
  53. 53.
    Hehrlein C, Zimmermann M, Metz J et al: Radioactive stent implantation inhibits neointimal proliferation in non-atherosclerotic rabbits, Circulation 88 (suppl I): 65, 1993.Google Scholar
  54. 54.
    Hehrlein C, Gollan C, Dönges K et al: Low-dose radioactive endovascular tents prevent smooth muscle cell proliferation and neointimal hyperplasia in rabbits, Circulation 92: 1570–1575, 1995.PubMedCrossRefGoogle Scholar
  55. 55.
    Hehrlein C, Stintz M, Kinscherf R et al: Pure beta-particle emitting stents inhibit neointima formation in rabbits, Circulation 93:641–645, 1996PubMedCrossRefGoogle Scholar
  56. 56.
    Laird JR, Carter AJ, Kufs WM et al: Inhibition of neointimal proliferation with low-dose irradiation from a beta-particle-emitting stent, Circulation 93: 529–536, 1996.PubMedCrossRefGoogle Scholar
  57. 57.
    Popowski Y, Verin V, Papirov I et al: Intraarterial 90-yttrium brachytherapy: preliminary dosimetric study using a specially modified angioplasty balloon, Int J Radiat Oncol Biol Phys 33: 713–717, 1995.PubMedCrossRefGoogle Scholar
  58. 58.
    Popowski Y, Verin V, Urban P: Endovascular beta-irradiation following percutaneous transluminal coronary balloon angioplasty, Int J Radiat Oncol Biol Phys 36: 841–845, 1996.PubMedCrossRefGoogle Scholar
  59. 59.
    Teirstein PS, Massullo V, Jani S et al: Catheter-based radiotherapy to inhibit restenosis after coronary stenting, N Engl J Med 336:1697–1703, 1997PubMedCrossRefGoogle Scholar
  60. 60.
    Massullo V, Teirstein PS, Jani S et al: Endovascular brachytherapy to inhibit coronary artery restenosis: an introduction to the SCRIPPS Coronary Radiation to Inhibit Proliferation Post Stenting trial, Int J Radiat Oncol Biol Phys 36: 973–975, 1996.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Rudolf R. Tutein Nolthenius
  • Frans L. Moll

There are no affiliations available

Personalised recommendations