Advertisement

Pathophysiology of Vascular Disease

  • Christopher K. Zarins
  • Seymour Glagov

Abstract

Vascular disease is the major cause of morbidity and mortality in Western civilization. Its manifestations include heart attacks, strokes, lower extremity occlusive disease, and aneurysmal disease, and its predominant underlying cause is atherosclerosis. Although atherosclerosis is a generalized disorder of the arterial tree associated with well-known risk factors—including hyperlipidemia, hypertension, cigarette smoking, and diabetes mellitus—its clinical expression tends to be focal. Not all individuals with extensive risk factors develop atherosclerotic plaques, and many patients with extensive atherosclerotic plaques have no recognized risk factors. Moreover, morbidity and mortality usually result from localized plaque deposition at certain vulnerable sites in the arterial tree rather than from diffuse disease. For example, the carotid arteries, coronary arteries, and lower extremity arteries are particularly susceptible to plaque formation, whereas the upper extremity arteries are rarely involved. Some arteries with small plaques may become occluded, whereas other arteries with large and extensive plaques may retain a normal lumen caliber. Still others may become aneurysmally enlarged.

Keywords

Wall Shear Stress Aortic Wall Plaque Formation Pulsatile Flow Artery Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ross R: The pathogenesis of atherosclerosis-an update, N Engl J Med 314: 488, 1986.PubMedCrossRefGoogle Scholar
  2. 2.
    Benditt EP, Barrett T, McDougall JK: Viruses in the etiology of atherosclerosis, Proc Natl Acad Sci USA 80: 6388, 1983.CrossRefGoogle Scholar
  3. 3.
    Caro CG: Transport of material between blood and wall in arteries. Ciba Found Symp 12: 127, 1973.Google Scholar
  4. 4.
    Ross R, Harker L: Hyperlipidemia and atherosclerosis, Science 193: 1094, 1976.PubMedCrossRefGoogle Scholar
  5. 5.
    Ross R: The pathogenesis of atherosclerosis: an update, N Engl J Med 314: 488–500, 1986.PubMedCrossRefGoogle Scholar
  6. 6.
    Ross R, Glomset J: The pathogenesis of atherosclerosis, AT Enel J Med 295: 369. 1976.Google Scholar
  7. 7.
    Ross R: Atherosclerosis: a problem of the biology of arterial wall cells and their interactions with blood components, Arteriosclerosis 1: 293, 1981.PubMedCrossRefGoogle Scholar
  8. 8.
    Ip JH, Fuster V, Badimon L et al: Syndromes of accelerated atherosclerosis: role of vascular injury and smooth muscle proliferation, J Am Coll Cardiol 15: 1667–1687, 1990.PubMedCrossRefGoogle Scholar
  9. 9.
    Schwartz S, Heimark R, Majesky M: Developmental mechanisms underlying pathology of arteries, Physiol Rev 70: 1177–1209, 1990.PubMedGoogle Scholar
  10. 10.
    Zarins CK, Taylor KE, Bomberger RA et al: Endothelial integrity at aortic ostial flow dividers, SEM 3: 249–254, 1980.Google Scholar
  11. 11.
    Taylor KE, Glagov S, Zarins CK: Preservation and structural adaptation of endothelium over experimental foam cell lesions, Arteriosclerosis 9: 881–894, 1989.PubMedCrossRefGoogle Scholar
  12. 12.
    Reidy MA: Biology of disease: a reassessment of endothelial injury and arterial lesion formation, Lab Invest 53: 513, 1985.PubMedGoogle Scholar
  13. 13.
    Falcone DJ, Hajjar DP, Minick CR: Lipoprotein and albumin accumulation in re-endothelialized and de-endothelialized aorta, Am J Pathol 114: 112, 1984.PubMedGoogle Scholar
  14. 14.
    Dzau VJ, Gibbons GH, Cooke JP et al: Vascular biology and medicine in the 1990s: scope, concepts, potentials, and perspectives, Circulation 87: 705, 1993.PubMedCrossRefGoogle Scholar
  15. 15.
    Di Corleto PE, Bowen-Pope DF: Cultured endothelial cells produce a platelet-derived growth-like factor protein, Proc Natl Acad Sci USA 80: 1919, 1983.CrossRefGoogle Scholar
  16. 16.
    Hajjar DP, Pomerantz KB: Signal transduction in atherosclerosis: integration of cytokines and the eicosanoid network, FASEB J 6: 2933, 1992.Google Scholar
  17. 17.
    Pomerantz K, Hajjar D: Eicosanoids in regulation of arterial smooth muscle cell phenotype, proliferative capacity, and cholesterol metabolism, Arteriosclerosis 9: 413, 1989.PubMedCrossRefGoogle Scholar
  18. 18.
    Bond MG, Adams MR, Bullock BC: Complicating factors in evaluating coronary artery atherosclerosis, Artery 9: 21, 1981.PubMedGoogle Scholar
  19. 19.
    Beere PA, Glagov S, Zarins CK: Experimental atherosclerosis at the carotid bifurcation of the cynomolgus monkey, Atheroscler Thromb 12: 1245, 1992.CrossRefGoogle Scholar
  20. 20.
    Armstrong ML, Heistad DD, Marcus MI et al: Structural and hemodynamic responses of peripheral arteries of macaque monkeys to atherogenic diet, Arteriosclerosis 5: 336, 1985.PubMedCrossRefGoogle Scholar
  21. 21.
    Glagov S, Weisenberg E, Zarins CK et al: Compensatory enlargement of human atherosclerotic coronary arteries, N Engl J Med 316: 1371, 1987.PubMedCrossRefGoogle Scholar
  22. 22.
    Zarins CK, Weisenberg E, Kolettis G et al: Differential enlargement of artery segments in response to enlarging atherosclerotic plaques, J Vasc Surg 7: 386, 1988.PubMedGoogle Scholar
  23. 23.
    Masawa N, Glagov S, Bassiouny H et al: Intimalthickness normalizes mural tensile stress in regions of increased intimai area and artery size, Arteriosclerosis 8: 621a, 1988.Google Scholar
  24. 24.
    Blair JM, Glagov S, Zarins CK: Mechanism of superficial femoral artery adductor canal steno-sis, Surg Forum 41: 359, 1990.Google Scholar
  25. 25.
    Malinow MR: Experimental models of atherosclerosis regression, Atherosclerosis 48 (2): 105, 1983.PubMedCrossRefGoogle Scholar
  26. 26.
    Wissler RW, Vesselinovitch D: Combined effects of cholestyramine and probucol on regression of atherosclerosis in rhesus monkey aortas, Appl Pathol 1 (2): 89, 1983.Google Scholar
  27. 27.
    Stary HC: Regression of atherosclerosis in primates, Virchows Arch [A] 383: 117, 1979.CrossRefGoogle Scholar
  28. 28.
    Clarkson TB, Bond MG, Bullock BC et al: A study of atherosclerosis regression in Macaca mulatta. V. Changes in abdominal aorta and carotid and coronary arteries from animals with atherosclerosis induced for 38 months and then regressed for 24 or 48 months at plasma cholesterol concentrations of 300 or 200 mg/dl, Exp Mol Pathol 41 (I): 96, 1984.PubMedCrossRefGoogle Scholar
  29. 29.
    Daoud AS, Jarmolych J, Augustyn JM et al: Sequential morphologic studies of regression of advanced atherosclerosis, Arch Pathol Lab Med 105 (5): 233, 1981.PubMedGoogle Scholar
  30. 30.
    Blankenhorn DH, Nessim SA, Johnson BL et al: Beneficial effects of combined colestipolniacin therapy on coronary atherosclerosis and coronary venous bypass grafts, JAMA 257: 3233, 1987.PubMedCrossRefGoogle Scholar
  31. 31.
    Brown G, Albert JJ, Fisher LD et al: Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B, N Engl J Med 323: 1290, 1990.CrossRefGoogle Scholar
  32. 32.
    Buchwald H, Varco RL, Matts PJ et al: Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia: report of the Program on the Surgical Control of the Hyperlipidemias (POSCH), N Engl J Med 323: 946, 1990.PubMedCrossRefGoogle Scholar
  33. 33.
    Zarins CK, Zatina MA, Glagov S: Correlation of postmortem angiography with pathologic anatomy: quantitation of atherosclerotic lesions. In Bond MG et al, editors: Clinical diagnosis of atherosclerosis: quantitative methods of evaluation, New York, 1983, Springer-Verlag.Google Scholar
  34. 34.
    Zarins CK, Glagov S, Wissler RW et al: Aneurysm formation in experimental atherosclerosis. Relationship to plaque evolution, J Vasc Surg 12 (3): 246, 1990.PubMedGoogle Scholar
  35. 35.
    Zarins CK, Xu C-P, Glagov S: Aneurysmal enlargement of the aorta during regression of experimental atherosclerosis, J Vasc Surg 15: 90, 1992.PubMedCrossRefGoogle Scholar
  36. 36.
    Glagov S, Zarins CK, Giddens DP et al: Atherosclerosis: what is the nature of the plaque? In Strandness DE Jr et al, editors: Vascular diseases: current research and clinical applications, Orlando, Fla, 1987, Grune & Stratton.Google Scholar
  37. 37.
    Glagov S, Zarins CK, Giddens DP et al: Hemodynamics and atherosclerosis, Arch Pathol Lab Med 112: 1018–1031, 1988.PubMedGoogle Scholar
  38. 38.
    Zarins CK, Bomberger RA, Glagov S: Local effects of stenosis: increased flow velocity inhibits atherogenesis, Circulation 64 (suppl II): 21–227, 1981.Google Scholar
  39. 39.
    Bassiouny HS, Lieber BB, Giddens DP et al: Quantitative inverse correlation of wall shear stress with experimental intimai thickening, Surg Forum 39: 328–330, 1988.Google Scholar
  40. 40.
    Caro CG, Fitz-Gerald JM, Schroter RC: Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis, Proc R Soc Lond B Biol Sci 117: 109–159, 1971.CrossRefGoogle Scholar
  41. 41.
    Robertson AJ Jr: Oxygen requirements of the human arterial intima in atherogenesis, Prog Biochem Pharmacol 4: 305–316, 1968.Google Scholar
  42. 42.
    Giddens DP, Zarins CK, Glagov S: Response of arteries to near-wall fluid dynamic behavior, Appl Mech Rev 43 (5): S96 - S102, 1990.CrossRefGoogle Scholar
  43. 43.
    Zarins CK, Giddens DP, Bharadvaj BK et al: Carotid bifurcation atherosclerosis: quantitative correlation of plaque localization with flow velocity profiles and wall shear stress, Circ Res 53: 502–514, 1983.PubMedCrossRefGoogle Scholar
  44. 44.
    Gerrity RG, Goss JA, Soby L: Control of monocyte recruitment by chemotactic factor(s) in lesion-prone areas of swine aorta, Arteriosclerosis 5: 55–66, 1985.PubMedCrossRefGoogle Scholar
  45. 45.
    Parmentier EM, Morton WA, Petschek HE: Platelet aggregate formation in a region of separated blood flow, Phys Fluids 20: 2012–2021, 1981.CrossRefGoogle Scholar
  46. 46.
    Fox JA, Hugh AE: Static zones in the internal carotid artery: correlation with boundary layer separation and stasis in model flows, Br J Radiol 43: 370–376, 1976.CrossRefGoogle Scholar
  47. 47.
    Ku DN, Giddens DP: Pulsatile flow in a model carotid bifurcation, Arteriosclerosis 3: 31–39, 1983.PubMedCrossRefGoogle Scholar
  48. 48.
    Ku DN, Giddens DP, Zarins CK et al: Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low and oscillating shear stress, Arteriosclerosis 5: 293–302, 1985.PubMedCrossRefGoogle Scholar
  49. 49.
    Fry DL: Hemodynamic forces in atherogenesis. In Scheinberg P, editor: Cerebrovascular disease, New York, 1976, Raven Press.Google Scholar
  50. 50.
    Nerem RM, Levesque MJ, Cornhill JF: Vascular endothelial morphology as an indicator of the pattern of blood flow, J Biomech Eng 103: 171–176, 1981.CrossRefGoogle Scholar
  51. 51.
    Dewey CF, Bussolari SR, Gimbrone MA et al: The dynamic response of vascular endothelial cells to fluid shear stress, J Biomech Eng 103: 177–185, 1981.PubMedCrossRefGoogle Scholar
  52. 52.
    Fry DL: Responses of the arterial wall to certain physical factors, Ciba Found Symp 12: 93–125, 1973.Google Scholar
  53. 53.
    Giddens DP, Khalifa AMA: Turbulence measurements with pulsed Doppler ultrasound employing a frequency tracking method, Ultrasound Med Biol 8: 427–437, 1982.PubMedCrossRefGoogle Scholar
  54. 54.
    Davies PF, Remuzzi A, Gordon EJ et al: Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro, Proc Natl Acad Sci USA 83: 2114–2117, 1986.PubMedCrossRefGoogle Scholar
  55. 55.
    Gutstein WH, Farrell GA, Armellini C: Blood flow disturbance and endothelial cell injury in pre-atherosclerotic swine, Lab Invest 29: 134–149, 1973.PubMedGoogle Scholar
  56. 56.
    Lieber BB: Ordered and random structures in pulsatile flow through constricted tubes, thesis, Atlanta, Ga, 1985, Georgia Institute of Technology.Google Scholar
  57. 57.
    Khalifa AMA, Giddens DP: Characterization and evolution of post-stenotic flow disturbances, J Biomech 14: 279–296, 1981.PubMedCrossRefGoogle Scholar
  58. 58.
    Ku DN, Zarins CK, Giddens DP et al: Reduced atherogenesis distal to stenosis despite turbulence and hypertension (abstr), Circulation 74 (suppl 2): II - 334, 1986.Google Scholar
  59. 59.
    Coutard M, Osborne-Pellegrin MJ: Decreased dietary lipid deposition in spontaneous lesions distal to a stenosis in the rat caudal artery, Artery 12: 82–98, 1983.Google Scholar
  60. 60.
    Bomberger RA, Zarins CK, Taylor KE et al: Effect of hypotension on atherogenesis and aortic wall composition, J Surg Res 28: 402–409, 1980.PubMedCrossRefGoogle Scholar
  61. 61.
    Bharadvaj BK, Mabon RF, Giddens DP: Steady flow in a model of the human carotid bifurcation: part IT. laser doppler anemometer measurements, J Biomech Eng 15: 363–378, 1982.CrossRefGoogle Scholar
  62. 62.
    Ku DN, Giddens DP, Phillips DJ et al: Hemodynamics of the normal human carotid bifurcation: in vitro and in vivo studies, Ultrasound Med Biol 11: 13–26, 1985.PubMedCrossRefGoogle Scholar
  63. 63.
    Glagov S, Rowley DA, Kohut R: Atherosclerosis of human aorta and its coronary and renal arteries, Arch Pathol Lab Med 72: 558–571, 1961.Google Scholar
  64. 64.
    Chabanian AV: The influence of hypertension and other hemodynamic factors in atherogenesis, Cardiovasc Dis 26: 177–196, 1983.CrossRefGoogle Scholar
  65. 65.
    Kannel WB, Schwartz MJ, McNamara PM: Blood pressure and risk of coronary heart disease: the Framingham study, Dis Chest 56: 4352, 1969.CrossRefGoogle Scholar
  66. 66.
    Robertson WB, Strong JP: Atherosclerosis in persons with hypertension and diabetes mellitus, Lab Invest 18: 538, 1969.Google Scholar
  67. 67.
    Medical Research Council Working party: MCR trial of treatment of mild hypertension: principal results, Br Med J 291: 97–104, 1985.CrossRefGoogle Scholar
  68. 68.
    Breterton KN, Day AJ, Skinner SL: Hypertension-accelerated atherogenesis in cholesterol-fed rabbits, Atherosclerosis 27: 79–87, 1977.CrossRefGoogle Scholar
  69. 69.
    Bomberger RA, Zarins CK, Glagov S: Subcritical arterial stenosis enhances distal atherosclerosis. Resident Research Award, J Surg Res 30: 205–212, 1981.PubMedCrossRefGoogle Scholar
  70. 70.
    Hollander W, Madoff I, Paddock J et al: Aggravation of atherosclerosis by hypertension in a subhuman primate model with coarctation of the aorta, Circ Res 38 (suppl 2): 63, 1976.PubMedCrossRefGoogle Scholar
  71. 71.
    Lyon RT, Runyan-Hass A, Davis HR et al: Protection from atherosclerotic lesion formation by reduction of artery wall motion, J Vasc Surg 5 (3): 413–420, 1987.Google Scholar
  72. 72.
    Cozzi PJ, Lyon RT, Davis HR et al: Aortic wall metabolism in relation to susceptibility and resistance to experimental atherosclerosis, J Vasc Surg 7 (5): 706–714, 1988.PubMedGoogle Scholar
  73. 73.
    Zarins CK, Bomberger RA, Taylor KE et al: Artery stenosis inhibits regression of diet-induced atherosclerosis, Surgery 88: 86–92, 1980.PubMedGoogle Scholar
  74. 74.
    Xu C-P, Glagov S, Zatina MA et al: Hypertension sustains plaque progression despite reduction of hypercholesterolemia, Hypertension 18 (2): 123–129, 1991.PubMedCrossRefGoogle Scholar
  75. 75.
    McGill HC Jr: Atherosclerosis: problems in pathogenesis. In Paoletti R, Gotto AM, editors: Atherosclerosis reviews, New York, 1977, Raven Press.Google Scholar
  76. 76.
    Montenegro MR. Eggen DA: Topography of atherosclerosis in the coronary arteries, Lab Invest 18: 586–593, 1968.PubMedGoogle Scholar
  77. 77.
    Tang TD, Giddens DP, Zarins CK et al: Velocity profile and wall shear measurements in a model human coronary artery, Adv Bio Eng ASME 17: 261–263, 1990.Google Scholar
  78. 78.
    Granata L, Olsson RA, Huvos A et al: Coronary inflow and oxygen usage following cardiac sympathetic nerve stimulator in unanesthetized dogs, Circ Res 16: 114, 1965.PubMedCrossRefGoogle Scholar
  79. 79.
    Beere PA, Glagov S, Zarins CK: Retarding effect of lowered heart rate on coronary atherosclerosis, Science 226: 180–182, 1984.PubMedCrossRefGoogle Scholar
  80. 80.
    Schroll M, Hagerup LM: Risk factors of myocardial infarction and death in men aged 50 at entry, Dan Med Bull 24: 252, 1977.PubMedGoogle Scholar
  81. 81.
    Dyer AR, Persky V, Stamler J et al: Heart rate as a prognostic factor for coronary heart disease and mortality: findings in three Chicago epidemiologic studies, Am J Epidemiol 112: 736, 1980.PubMedGoogle Scholar
  82. 82.
    Williams PT, Wood PD, Haskell WL et al: The effects of running mileage and duration on plasma lipoprotein levels, JAMA 247: 2674, 1982.PubMedCrossRefGoogle Scholar
  83. 83.
    Williams PT, Haskell WL, Vranizan KM et al: Associations of resting heart rate with concentrations of lipoprotein subfractions in sedentary men, Circulation 71: 441, 1985.PubMedCrossRefGoogle Scholar
  84. 84.
    Ku DN, Glagov S, Moore JE Jr et al: Flow patterns in the abdominal aorta under simulated post-prandial and exercise conditions: an experimental study, J Vasc Surg 9: 309–316, 1989.PubMedGoogle Scholar
  85. 85.
    Zarins CK, Glagov S: Aneurysms and obstructive plaques: differing local responses to atherosclerosis. In Bergan JJ,Yao J, editors: Aneurysms: diagnosis and treatment, ed 1, New York, 1982, Grune & Stratton.Google Scholar
  86. 86.
    Busuttil RW, Abou-Zamzam AM, Machleder HI: Collagenase activity of the human aorta: a comparison of patients with and without abdominal aortic aneurysm, Arch Surg 116: 1373–1378, 1980.CrossRefGoogle Scholar
  87. 87.
    Menashi S, Campa JS, Greenhalgh RM et al: Collagen in abdominal aortic aneurysm: typing, content, and degradation, J Vasc Surg 6: 578–582, 1987.PubMedGoogle Scholar
  88. 88.
    Brophy CM, Marks WH, Reilly JM et al: Decreased tissue inhibitor of metalloproteinases (TIMP) in abdominal aortic aneurysm tissue: a preliminary report, J Surg Res 50: 653–657, 1991.PubMedCrossRefGoogle Scholar
  89. 89.
    Dobrin PB, Baker WH, Gley WC: Elastolytic and collagenolytic studies of arteries: implications for the mechanical properties of aneurysms, Arch Surg 119: 405–409, 1984.PubMedCrossRefGoogle Scholar
  90. 90.
    DePalma RG, Koletsky S, Bellon EM et al: Failure of regression of atherosclerosis in dogs with moderated cholesterolemia, Atherosclerosis 27: 297–310, 1977.PubMedCrossRefGoogle Scholar
  91. 91.
    Zatina MA, Zarins CK, Gewertz BL et al: Role of medial lamellar architecture in the pathogenesis of aortic aneurysms, J Vasc Surg 1: 442–448, 1984.PubMedGoogle Scholar
  92. 92.
    Zarins CK, Glagov S, Vesselinovitch D et al: Aneurysm formation in experimental atherosclerosis: relationship to plaque evolution, J Vasc Surg 12: 246–256, 1990.PubMedGoogle Scholar
  93. 93.
    Zarins CK, Xu C, Glagov S: Aneurysmal enlargement of the aorta during regression of experimental atherosclerosis, J Vasc Surg 15: 90–101, 1992.PubMedCrossRefGoogle Scholar
  94. 94.
    Strickland HL, Bond MG: Aneurysms in large colony of squirrel monkeys (Saimiri sciureus), Lab Anim Sci 33: 589–592, 1983.PubMedGoogle Scholar
  95. 95.
    Clark ET, Gewertz BL, Bassiouny HS et al: Current results of elective aortic reconstruction for aneurysmal and occlusive disease,J Vasc Surg 31: 438–441, 1990.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Christopher K. Zarins
  • Seymour Glagov

There are no affiliations available

Personalised recommendations