Advertisement

Biomaterials: Considerations for Endovascular Devices

  • Martin R. Back
  • Rodney A. White

Abstract

Rapidly evolving catheter-based technology has stimulated increasing application of endovascular therapy for the treatment of atherosclerotic coronary arteries and more recently peripheral vascular disease. Research and development advances have affected metal, textile, and polymer biomaterials and have facilitated refinements in design and construction of endovascular devices. As a result, the performance of these devices has improved, complications have been reduced, and the uses of minimally invasive applications have expanded. This chapter reviews the biomaterial properties and design characteristics of existing guidewires, angioplasty balloons and catheters, and metallic intravascular stents and filters with reference to their implementation and function. Design and biomaterial considerations for newly developed endoluminal grafts and their applications are also discussed.

Keywords

Inferior Vena Caval Abdominal Aortic Aneurysm Balloon Catheter Hoop Stress Dacron Graft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schroder J: The mechanical properties of guidewires. Part I. Stiffness and torsional strength, Cardiovasc Intervent Radiol 16: 43–46, 1993.PubMedCrossRefGoogle Scholar
  2. 2.
    Schroder J: The mechanical properties of guidewires. Part II. Kinking resistance, Cardiovasc Intervent Radiol 16: 47–48, 1993.PubMedCrossRefGoogle Scholar
  3. 3.
    Schroder J: The mechanical properties of guidewires. Part III. Sliding friction, Cardiovasc Intervent Radiol 16: 93–97, 1993.PubMedCrossRefGoogle Scholar
  4. 4.
    Gruntzig A, Hopff H: Percutane Rekanalisation chronischer arterieller Verschlusse mit einem neuen Dilatationskatheter: Modification der Dotter-Technik, Dtsch Med Wochenschr 99: 2502–2505, 1974.PubMedCrossRefGoogle Scholar
  5. 5.
    Castaneda-Zuniga WR, Formanek A, Tadaverthy M et al: The mechanism of balloon angioplasty, Radiology 135: 565–571, 1980.PubMedGoogle Scholar
  6. 6.
    Chin AK, Kinney TB, Rurik GW et al: A physical measurement of the mechanisms of transluminal angioplasty, Surgery 95: 196–200, 1983.Google Scholar
  7. 7.
    Waller BF: The eccentric coronary atherosclerotic plaque: morphologic observations and clinical relevance, Clin Cardiol 12: 14–20, 1989.PubMedCrossRefGoogle Scholar
  8. 8.
    Abele JE: Balloon catheters and transluminal dilatation: technical considerations, Am J Radiol 135: 901–906, 1980.Google Scholar
  9. 9.
    Abele JE: Balloon catheter technology. In: Castaneda-Zuniga WR, Tadavarthy SM, editors: Interventional radiology, Baltimore, 1992, Williams & Wilkins, pp 345–350.Google Scholar
  10. 10.
    Matsumoto AH, Barth KH, Selby JB, Tegtmeyer CJ: Peripheral angioplasty balloon technology, Cardiovasc Intervent Radiol 16: 135–143, 1993.PubMedCrossRefGoogle Scholar
  11. 11.
    Jacobs AK: Selection of guiding catheters. In Faxon DP, editor: Practical angioplasty, New York, 1993, Raven Press, pp 43–52.Google Scholar
  12. 12.
    Abele JE: Balloon engineering and materials. In Vlietstra RE, Holmes DR, editors: Coronary balloon angioplasty, Boston, 1994, Blackwell Scientific, pp 292–304.Google Scholar
  13. 13.
    Faxon DP: Selection of balloon catheters and guidewires. In Faxon DP, editor: Practical angioplasty, New York, 1993, Raven Press, pp 53–70.Google Scholar
  14. 14.
    Williams DF: The selection of implant materials. In Williams DF, Roaf R, editors: Implants in surgery, London, 1973, Saunders, chap 6.Google Scholar
  15. 15.
    Sutow EJ, Pollack SR: The biocompatibility of certain stainless steels. In Williams DF, editor: Biocompatibility of clinical implants materials, vol 1, Boca Raton, 1981, CRC Press, chap 3.Google Scholar
  16. 16.
    Williams DF: The deterioration of materials in use. In Williams DF, Roaf R, editors: Implants in surgery, London, 1973, Saunders, chap 4.Google Scholar
  17. 17.
    Palmaz JC: Balloon expandable intravascular stent, AJR 150: 1263–1269, 1988.PubMedGoogle Scholar
  18. 18.
    Crochet D et al: Plasma treatment effects on the tantalum Strecker stent implanted in femoral arteries of sheep, Cardiovasc Intervent Radio 17: 285–291, 1994.Google Scholar
  19. 19.
    Lemons JE: Corrosion and biodegradation. In von Recum A, editor: Handbook of biomaterials evaluation, New York, Macmillan, 1986, chap 9.Google Scholar
  20. 20.
    Fisher AA: Safety of stainless steel in nickel sensitivity, JAMA 221: 1282, 1972.CrossRefGoogle Scholar
  21. 21.
    Fisher AA: Allergic dermatitis presumably due to metallic bodies containing nickel or cobalt, Cutis 19: 285, 1977.PubMedGoogle Scholar
  22. 22.
    Samitz MH, Katz SA: Nickel dermatitis hazards from prostheses: in vivo and in vitro solubility studies, Br J Dermatol 92: 287, 1975.PubMedCrossRefGoogle Scholar
  23. 23.
    Lyell A, Bain WH: Nickel allergy and valve replacement, Lancet 1: 408, 1974.PubMedCrossRefGoogle Scholar
  24. 24.
    Pegum JS: Nickel allergy, Lancet 1: 674, 1974.PubMedCrossRefGoogle Scholar
  25. 25.
    Williams DF: The response of the body environment to implants. In Williams DF, Roaf R, editors: Implants in surgery, London, 1973, Saunders, chap 5.Google Scholar
  26. 26.
    Sawyer PN et al: Electrochemical precipitation of blood cells on metal electrodes: an aid in the selection of vascular prostheses, Natl Acad Sci 53: 294, 1965.CrossRefGoogle Scholar
  27. 27.
    De Palma VA et al: Investigation of three-surface properties of several metals and their relation to blood compatibility, J Biomed Mater Res Symp 3: 37, 1972.CrossRefGoogle Scholar
  28. 28.
    Sawyer PN et al: Electron microscopy and physical chemistry of healing in prosthetic heart valves, skirts and struts, J Thorac Cardiovasc Surg 67 (1): 24, 1974.PubMedGoogle Scholar
  29. 29.
    Sawyer PN, Sophie Z, O’Shaughnessy AM: Hemocompatibility assessment. In von Recum A, editor: Handbook of biomaterials evaluation, New York, 1986, Macmillan, chap 26.Google Scholar
  30. 30.
    Palmaz JC: Intravascular stents: tissue—stent interactions and design considerations, AJR 160: 613, 1993.PubMedGoogle Scholar
  31. 31.
    Robinson KA et al: Correlated microscopic observations of arterial responses to intravascular stenting, Scanning Microsc 3: 665, 1989.PubMedGoogle Scholar
  32. 32.
    Rousseau H et al: Self-expanding endovascular prosthesis: an experimental study, Radiology 164: 709, 1987.PubMedGoogle Scholar
  33. 33.
    Greenfield LJ, Savin MA: Comparison of titanium and stainless steel Greenfield vena caval filters, Surgery 106: 820, 1989.PubMedGoogle Scholar
  34. 34.
    Back M, Kopchok G, Mueller M et al: Changes in arterial wall compliance after endovascular stenting, J Vasc Surg 19: 905–911, 1994.PubMedCrossRefGoogle Scholar
  35. 35.
    Palmaz JC et al: Normal and stenotic renal arteries: experimental balloon-expandable intraluminal stenting, Radiology 164: 705, 1987.PubMedGoogle Scholar
  36. 36.
    Schatz RA: A view of vascular stents, Circulation 79: 445, 1989.PubMedCrossRefGoogle Scholar
  37. 37.
    Vorwerk D et al: Neointima formation following arterial placement of self-expanding stents of different radial force: experimental results, Cardiovasc Intervent Radiol 17: 27, 1994.PubMedCrossRefGoogle Scholar
  38. 38.
    Barth KH et al: Flexible tantalum stents implanted in aortas and iliac arteries: effects in normal canines, Radiology 175: 91, 1990.PubMedGoogle Scholar
  39. 39.
    White CJ et al: A new balloon-expandable tantalum coil stent: angiographic patency and histologic findings in an atherogenic swine model, J Am Coll Cardiol 19: 870, 1992.PubMedCrossRefGoogle Scholar
  40. 40.
    Sutton CS et al: Titanium-nickel intravascular endoprosthesis: a 2-year study in dogs, AJR 151: 597, 1988.PubMedGoogle Scholar
  41. 41.
    Roubin G et al: Early and late results of intra-coronary arterial stenting after coronary angioplasty in the dog, Circulation 76: 891, 1987.PubMedCrossRefGoogle Scholar
  42. 42.
    Rollins N et al: Self-expanding metallic stents: preliminary evaluation in an atherosclerotic model, Radiology 163: 739, 1987.PubMedGoogle Scholar
  43. 43.
    Den Otter G: Total prosthetic replacement of atrioventricular valves in the dog, Thorax 27: 105, 1972.CrossRefGoogle Scholar
  44. 44.
    Strecker EP et al: Expandable tubular stents for treatment of arterial occlusive diseases: experimental and clinical results, Radiology 175: 97, 1990.PubMedGoogle Scholar
  45. 45.
    Von Holst H, Collins P, Steiner L: Titanium, silver and tantalum clips in brain tissue, Acta Neurochir (Wien) 56: 239, 1981.CrossRefGoogle Scholar
  46. 46.
    Keller JC, Lautenschlager EP: Metal and alloys. In von Recum A, editor: Handbook of biomaterials evaluation, New York, 1986, Macmillan, chap 1.Google Scholar
  47. 47.
    Hearn JA, Robinson KA, Roubin GS: In vitro thrombus formation of stent wires: role of metallic composition and heparin coating [abstract], J Am Coll Cardiol 17: 302A, 1991.Google Scholar
  48. 48.
    Ribeiro PA et al: A new expandable intracoronary tantalum (Strecker) stent: early experimental results and follow-up to twelve months, Am Heart J 125: 501, 1993.PubMedCrossRefGoogle Scholar
  49. 49.
    Fontaine AB et al: Decreased platelets adherence of polymer-coated tantalum stents, J Vasc Intervent Radiol 5: 567, 1994.CrossRefGoogle Scholar
  50. 50.
    Williams DF: Titanium and titanium alloys. In Williams DF, editor: Biocompatibility of clinical implant materials, vol 1, Boca Raton, 1981, CRC Press, chap 2.Google Scholar
  51. 51.
    Williams DF: Titanium as a metal for implantation. Part 2. Biological properties and clinical applications, J Med Eng Technol Sept: 266, 1977.Google Scholar
  52. 52.
    Schetky LM: Shape-memory alloys, Sci Am 241: 74, 1979.CrossRefGoogle Scholar
  53. 53.
    Cragg AH et al: Nitinol intravascular stents: results of preclinical evaluation, Radiology 189: 775, 1993.PubMedGoogle Scholar
  54. 54.
    Castleman LS, Motzkin SM: The biocompatibility of nitinol. In Williams DF, editor: Biocompatibility of clinical implant materials, vol 1, Boca Raton, 1981, CRC Press, chap 5.Google Scholar
  55. 55.
    Haasters J, Bensmann G, Baumgart F: Memory alloys: a new material for implantation in orthopedic surgery. Part II. In: Uhthoff HK, editor: Current concepts of internal fixation of fractures. New York, 1980, Springer-Verlag.Google Scholar
  56. 56.
    Castleman LS et al: Biocompatibility of nitinol alloy as an implant material, J Biomed Mater Res 10: 695, 1976.PubMedCrossRefGoogle Scholar
  57. 57.
    Oonishi H et al: Biological reaction of Ni in Ti-Ni shape memory alloy, Trans Soc Biomater 7: 183, 1984.Google Scholar
  58. 58.
    Williams DF: The properties and clinical uses of cobalt-chromium alloys. In Williams DF, editor: Biocompatibility of clinical implant materials, vol I, Boca Raton, 1981, CRC Press, chap 4.Google Scholar
  59. 59.
    Shellock FG, Kanal E: MR procedures and patients with biomedical implants, materials, and devices. In Shellock FG, Kanal E, editors: Magnetic resonance: bioeffects, safety and patient management, New York, 1994, Raven Press, chap 10.Google Scholar
  60. 60.
    Teitelbaum GP, Bradley WG, Klein BD: MR imaging artifacts, ferromagnetism and magnetic torque of intravascular filters, stents and coils, Radiology 166: 657, 1988.PubMedGoogle Scholar
  61. 61.
    Matsumoto AH et al: Tantalum vascular stents: in vivo evaluation with MR imaging, Radiology 170: 753, 1989.PubMedGoogle Scholar
  62. 62.
    Becker GJ: Intravascular stents, general principles and status of lower extremity arterial applications, Circulation 83(suppl I ): 122, 1991.Google Scholar
  63. 63.
    Fluckiger F et al: Firmness, elasticity and deformation characteristics of metal stents [abstract], Cardiovasc Intervent Radiol 16 (suppl): 19, 1993.Google Scholar
  64. 64.
    Jedwab MR, Clerc CO: A study of the geometrical and mechanical properties of a self-expanding metallic stent-theory and experiment, J Appl Biomater 4: 77, 1993.PubMedCrossRefGoogle Scholar
  65. 65.
    Fallone BG, Wallace S, Gianturco C: Elastic characteristics of self-expanding metallic stents, Invest Radiol 23: 370, 1988.PubMedCrossRefGoogle Scholar
  66. 66.
    Abbott WM et al: Effect of compliance mismatch on vascular graft patency, J Vasc Surg 5: 376. 1987.PubMedGoogle Scholar
  67. 67.
    Hausegger KA et al: Iliac artery stent placement: clinical experience with a nitinol stent, Radiology 190: 199, 1994.PubMedGoogle Scholar
  68. 68.
    Laird JR et al: Placement and angiographic patency of the Strecker coronary stent, Cathet Cardiovasc Diagn 31: 322, 1994.PubMedCrossRefGoogle Scholar
  69. 69.
    Santoian EC, King S: Intravascular stents, intimal proliferation and restenosis [editorial comment], J Am Coll Cardiol 19: 877, 1992.PubMedCrossRefGoogle Scholar
  70. 70.
    Greenfield LJ, DeLucia A: Endovascular therapy of venous thromboembolic disease, Surg Clin North Am 72: 969, 1992.Google Scholar
  71. 71.
    Greenfield LJ et al: Extended evaluation of the titanium Greenfield vena caval filter, J Vasc Surg 20: 458, 1994.PubMedCrossRefGoogle Scholar
  72. 72.
    Teitelbaum GP et al: Vena caval filter splaying: potential complication of use of the titanium Greenfield filter, Radiology 173: 809, 1989.PubMedGoogle Scholar
  73. 73.
    Ricco JB et al: Percutaneous transvenous caval interruption with the “LGM” filter: early results of a multicenter trial, Ann Vasc Surg 3: 242, 1988.CrossRefGoogle Scholar
  74. 74.
    Dorfman GS: Percutaneous inferior vena cava filters, Radiology 174: 987, 1990.PubMedGoogle Scholar
  75. 75.
    Balko A, Piasecki GJ, Shah DM et al: Trans-femoral placement of intraluminal polyurethane prosthesis for abdominal aortic aneurysm, J Surg Res 40: 305–309, 1986.PubMedCrossRefGoogle Scholar
  76. 76.
    Lawrence DD, Charnsanngavej C, Wright KC et al: Percutaneous endovascular graft: experimental evaluation, Radiology 163: 357–360, 1987.PubMedGoogle Scholar
  77. 77.
    Mirich D, Wright KC, Wallace S et al: Percutaneously placed endovascular grafts for aortic aneurysms: feasibility study, Radiology 170: 1033–1037, 1989.PubMedGoogle Scholar
  78. 78.
    Laborde JC, Parodi JC, Clem MF et al: Intraluminal bypass of abdominal aortic aneurysm: feasibility study, Radiology 184: 185–190, 1992.PubMedGoogle Scholar
  79. 79.
    Parodi JC, Palmaz JC, Barone HD: Trans-femoral intraluminal graft implantation for abdominal aortic aneurysms, Ann Vasc Surg 5: 491–499, 1991.PubMedCrossRefGoogle Scholar
  80. 80.
    Parodi JC: Endovascular repair of abdominal aortic aneurysms and other arterial lesions, J Vasc Surg 21: 549–557, 1995.PubMedCrossRefGoogle Scholar
  81. 81.
    Chuter TAM, Green RM, Ouriel K et al: Trans-femoral endovascular aortic graft placement. J Vasc Surg 18: 185–197, 1993.PubMedCrossRefGoogle Scholar
  82. 82.
    Chuter TAM, Wendt G, Hopkinson BR et al: European experience with a system for bifurcated stent-graft insertion, J Endovasc Surg 4: 13–22, 1997.PubMedCrossRefGoogle Scholar
  83. 83.
    May J,White G, Waugh R et al: Treatment of complex abdominal aortic aneurysms by a combination of endoluminal and extraluminal aortofemoral grafts, J Vasc Surg 19: 924–933, 1994.CrossRefGoogle Scholar
  84. 84.
    White GH, Yu W, May J et al: Three-year experience with the White-Yu endovascular GAD graft for transluminal repair of aortic and iliac aneurysms. J Endovasc Surg 4: 124–136, 1997.PubMedCrossRefGoogle Scholar
  85. 85.
    Moore WS, Rutherford RB: Transluminal endovascular repair of abdominal aortic aneurysm: results of the North American EVT phase I trial. J Vasc Surg 23: 543–553, 1996.PubMedCrossRefGoogle Scholar
  86. 86.
    White RA, Donayre CE, Walot I et al: Preliminary clinical outcome and imaging criterion for endovascular prosthesis development on high-risk patients who have aortoiliac and traumatic arterial lesions. J Vasc Surg 24: 556–571, 1996.PubMedCrossRefGoogle Scholar
  87. 87.
    White RA, Fogarty TJ, Kopchok GE et al: Evaluation of a modular endovascular bifurcation prosthesis in a canine aortic aneurysm model. J Vasc Surg 24: 1034–1042, 1996.PubMedCrossRefGoogle Scholar
  88. 88.
    May J, White G, Waugh R et al: Transluminal placement of a prosthetic graft-stent device for treatment of subclavian artery aneurysm. J Vasc Surg 18: 1056–1059, 1993.PubMedCrossRefGoogle Scholar
  89. 89.
    Marin ML, Veith FJ, Panetta TF et al: Trans-femoral endoluminal stented graft repair of a popliteal artery aneurysm. J Vasc Surg 19: 754–757, 1994.PubMedCrossRefGoogle Scholar
  90. 90.
    Diethrich EB, Papazoglon K: Endoluminal grafting for aneurysmal and occlusive disease in the superficial femoral artery: early experience. J Endovasc Surg 2: 225–239, 1995.PubMedCrossRefGoogle Scholar
  91. 91.
    Cragg AH, Dake MD: Percutaneous femoropopliteal graft placement. Radiology 187; 643–646, 1993.PubMedGoogle Scholar
  92. 92.
    Henry M, Amar M, Ethernenot G et al: Initial experience with the Cragg Endopro System 1 in the interventional treatment of peripheral vascular disease, J Endovasc Surg 1: 31–43, 1994.PubMedCrossRefGoogle Scholar
  93. 93.
    Marin ML, Veith FJ, Sanchez LA et al: Endovascular aortoiliac grafts in combination with standard infrainguinal arterial bypasses in the management of limb-threatening ischemia: preliminary report, J Vasc Surg 22: 316–325, 1995.PubMedCrossRefGoogle Scholar
  94. 94.
    Ohki T, Marin ML, Veith FJ et al: Endovascular aortounifemoral grafts and femorofemoral bypass for bilateral limb-threatening ischemia, J Vasc Surg 24: 984–997, 1996.PubMedCrossRefGoogle Scholar
  95. 95.
    Marin ML, Veith FJ, Panetta TF et al: Transluminally placed endovascular stented graft repair for arterial trauma, J Vasc Surg 20: 466–473, 1994.PubMedCrossRefGoogle Scholar
  96. 96.
    Back MR, Kopchok GE, White RA et al: Endo-luminal placement of PTFE graft-stent devices in a canine model. Vasc Surg 28: 441–448, 1994.CrossRefGoogle Scholar
  97. 97.
    Turner RJ, Hoffman HL, Weinberg SL: Knitted Dacron double velour grafts. In Stanley JC, editor: Biologic and synthetic vascular prostheses, Orlando, 1982, Grune & Stratton, 509–522.Google Scholar
  98. 98.
    Gonza ER, Marble AE, Shaw A, Holland JG: Age related changes in mechanics of the aorta and pulmonary artery in man, J Appl Physiol 36: 407, 1974.Google Scholar
  99. 99.
    Kinley CE, Marble AE: Compliance: a continuing problem with vascular grafts, J Cardiovasc Surg 21: 163–170, 1980.Google Scholar
  100. 100.
    Walden R, L’Italien GJ, Megerman J, Abbott WM: Matched elastic properties and successful arterial grafting, Arch Surg 115: 1166–1169, 1980.PubMedCrossRefGoogle Scholar
  101. 101.
    Snyder RW, Botzko KM: Woven, knitted and externally supported Dacron vascular prostheses. In Stanley JC, editor: Biologic and synthetic vascular prostheses, Orlando, 1982, Grune & Stratton, pp 485–494.Google Scholar
  102. 102.
    Diethrich EB: Initial experience with in vivo expansion of PTFE in the treatment of occlusive and aneurysmal disease [abstract], J Endovasc Surg 2: 308–309, 1995.Google Scholar
  103. 103.
    Bergeron P, Henric A, Bonnet C, Reim R: Tensile characteristics of expanded PTFE for use in endoluminal grafting [abstract], J Endovasc Surg 2: 302–303, 1995.CrossRefGoogle Scholar
  104. 104.
    Palmaz JC, Tio FO, Laborde JC et al: Use of stents covered with PTFE in experimental abdominal aortic aneurysm, J Vasc Intervent Radiol 6: 879–885, 1995.CrossRefGoogle Scholar
  105. 105.
    Wesolowski SA, Fries CC, Karlson KE et al: Porosity, primary determinant of ultimate fate of synthetic grafts, Surgery 50: 91–101, 1961.PubMedGoogle Scholar
  106. 106.
    Ottinger LW, Darling RC, Werthlin LS et al: Failure of ultra light weight knitted Dacron grafts in arterial reconstruction, Arch Surg 111: 146–149, 1976.PubMedCrossRefGoogle Scholar
  107. 107.
    Szilagyi E, Pfeifer JR, DeRusso FJ: Long-term evaluation of plastic arterial substitutes: an experimental study, Surgery 55: 165–183, 1964.PubMedGoogle Scholar
  108. 108.
    Golden MA, Hanson SR, Kirkman TR et al: Healing of PTFE arterial grafts is influenced by graft porosity, J Vasc Surg 11: 838–845, 1990.PubMedGoogle Scholar
  109. 109.
    Kohler TR, Stratton JR, Kirkman TR et al: Conventional versus high-porosity PTFE grafts: clinical evaluation, Surgery 112: 901–907, 1992.PubMedGoogle Scholar
  110. 110.
    Bennett JG, Trono R, Norman JC et al: Experimental comparisons of vascular grafts, Cardiovasc Dis Bull Tex Heart Inst 4: 18–29, 1977.Google Scholar
  111. 111.
    Lindenauer SM, Weber TR, Miller TA et al: Velour vascular prostheses, Trans Am Soc Artif Intern Organs 20: 314–319, 1974.Google Scholar
  112. 112.
    Guidoin R, Gosselin C, Martin L et al: Polyester prostheses as substitutes in the thoracic aorta of dogs. I. Evaluation of commercial prostheses, J Biomed Mater Res 17: 1049–1077, 1988.CrossRefGoogle Scholar
  113. 113.
    Claggett PC: In vivo evaluation of platelet reactivity with vascular prostheses. In Stanley JC, editor: Biologic and synthetic vascular prostheses, Orlando, 1982, Grune & Stratton, pp 131–152.Google Scholar
  114. 114.
    Ohki T, Marin ML, Veith FJ et al: Anastomotic intimal hyperplasia: a comparison between conventional and endovascular stent graft techniques, J Surg Res 69: 255–267, 1997.PubMedCrossRefGoogle Scholar
  115. 115.
    Ombrellaro MP, Stevens SL, Freeman MB, Goldman MH: Reendothelialization and platelet derived growth factor activity associated with intraarterial stented grafts, Vasc Surg 31: 631–637, 1997.CrossRefGoogle Scholar
  116. 116.
    Marin ML, Veith FJ, Cynamon J et al: Human transluminally placed endovascular stented grafts: preliminary histopathologic analysis of healing grafts in aortoiliac and femoral artery occlusive disease, J Vasc Surg 21: 595–604, 1995.PubMedCrossRefGoogle Scholar
  117. 117.
    White RA, Donayre CE, deVirgilio C et al: Deployment technique and histopathological evaluation of an endoluminal vascular prosthesis used to repair an iliac artery aneurysm, J Endovasc Surg 3: 262–269, 1996.PubMedCrossRefGoogle Scholar
  118. 118.
    McGahan TJ, Barry GA, McGahan SL et al: Results of autopsy 7 months after successful endoluminal treatment of an infrarenal abdominal aortic aneurysm, J Endovasc Surg 2: 348–355, 1995.PubMedCrossRefGoogle Scholar
  119. 119.
    Hayoz D, Do-Dai D, Mahler F et al: Aortic inflammatory reaction associated with endoluminal bypass grafts, J Endovasc Surg 4: 354–360, 1997.PubMedCrossRefGoogle Scholar
  120. 120.
    Norgren L, Swartbol P: Biological responses to endovascular treatment of abdominal aortic aneurysms, J Endovasc Surg 4: 169–173, 1997.PubMedCrossRefGoogle Scholar
  121. 121.
    White RA, Verbin C, Kopchok G et al: The role of cinefluoroscopy and intravascular ultrasonography in evaluating the deployment of experimental endovascular prostheses, J Vasc Surg 21: 365–374, 1995.PubMedCrossRefGoogle Scholar
  122. 122.
    Matlaga BF, Yasenchak LP, Salthouse TN: Tissue response to implanted polymers: the significance of sample shape, J Biomed Mater Res 10: 391–397, 1976.PubMedCrossRefGoogle Scholar
  123. 123.
    White RA, Kopchok G, Zalewski M et al: Comparison of the deployment and healing of thin walled expanded PTFE stented grafts and covered stents, Ann Vasc Surg 10: 336–346, 1996.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Martin R. Back
  • Rodney A. White

There are no affiliations available

Personalised recommendations