Skip to main content

Image Production and Visualization Systems: Angiography, US, CT, and MRI

  • Chapter
  • 135 Accesses

Abstract

The role of imaging in vascular disease and its treatment have expanded with the rapid advent of new technologies. Clinicians rely on imaging techniques for the identification of the location and morphologic features of disease. Imaging has become increasingly important in quantifying the degree of disease and following its progression. It is routinely used to monitor therapy and to evaluate results after medical, surgical, or percutaneous intervention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith TP et al: Comparison of the efficacy of digital subtraction and film-screen angiography of the lower limb: prospective study in 50 patients, AJR Am J Roentgenol 158: 431, 1992.

    PubMed  CAS  Google Scholar 

  2. Malden ES et al: Peripheral vascular disease: evaluation with stepping DSA and conventional screen-film angiography, Radiology 191: 149, 1994.

    PubMed  CAS  Google Scholar 

  3. Morris TW et al: Iotrol, iodixanol, and 2deoxy-D-glucose effects on neural tissue CO2 production, AJNR Am J Neuroradiol 10: 1123, 1989.

    PubMed  CAS  Google Scholar 

  4. Bush WH, Swanson DP: Acute reactions to intravascular contrast media: types, risk factors, recognition, and specific treatment, AJR Am J Roentgenol 157: 1153, 1991.

    PubMed  CAS  Google Scholar 

  5. Katayama H et al: Adverse reactions to ionic and nonionic contrast media. A report from the Japanese Committee on the Safety of Contrast Media, Radiology 175: 621, 1990.

    PubMed  CAS  Google Scholar 

  6. Hartman GW et al: Mortality during excretory urography: Mayo Clinic experience, AJR Am J Roentgenol 139: 919, 1982.

    PubMed  CAS  Google Scholar 

  7. Lasser EC et al: Pretreatment with corticosteroids to alleviate reactions to intravenous contrast material, N Engl J Med 317: 845, 1987.

    Article  PubMed  CAS  Google Scholar 

  8. Cossman DV et al: Comparison of contrast arteriography to arterial mapping with colorflow duplex imaging in the lower extremities, J Vasc Surg 10: 522, 1989.

    PubMed  CAS  Google Scholar 

  9. Lasser EC et al: Pretreatment with corticosteroids to prevent adverse reactions to nonionic contrast media, AJR Am J Roentgenol 162: 523, 1994.

    PubMed  CAS  Google Scholar 

  10. Schwab SJ et al: Contrast nephrotoxicity: a randomized controlled trial of a nonionic and an ionic radiographic contrast agent, N Engl J Med 320: 149, 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Barrett BJ, Carlisle EJ: Metaanalysis of the relative nephrotoxicity of high-and low-osmolality iodinated contrast media, Radiology 188: 171, 1993.

    PubMed  CAS  Google Scholar 

  12. Rudnick MR et al: Nephrotoxicity of ionic and 28. nonionic contrast media in 1196 patients: a randomized trial, Kidney Int 47: 254, 1995.

    Article  PubMed  CAS  Google Scholar 

  13. Solomon R et al: Effects of saline, mannitol, and furosemide to prevent acute decreases in renal 29. function induced by radiocontrast agents, N Engl J Med 331: 1416, 1994.

    Article  PubMed  CAS  Google Scholar 

  14. Hawkins IF et al: CO2 digital angiography: a safer contrast agent for renal vascular imaging?, 30. Am J Kidney Dis 24: 685, 1994.

    PubMed  Google Scholar 

  15. Strandness DE et al: Vascular laboratory utilization and payment: report of the Ad Hoc Committee of the Western Vascular Society, J Vasc 31. Surg 16: 163, 1992

    Google Scholar 

  16. Moneta GL et al: Operative versus nonoperative management of asymptomatic high-grade inter- 32. nal carotid artery stenosis: improved results with endarterectomy, Stroke 18: 1005, 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Roederer GO et al: The natural history of 33. carotid arterial disease in asymptomatic patients with cervical bruits, Stroke 15: 605, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. North American Symptomatic Carotid 34. Endarterectomy Trial Collaborators: Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis, N Engl 35. J Med 325: 445, 1991.

    Google Scholar 

  19. Robinson ML et al: Diagnostic criteria for carotid duplex sonography, AJR Am J 36. Roentgenol 151: 1045, 1988.

    CAS  Google Scholar 

  20. Yucel EK et al: Interobserver reproducibility of measurements of the abdominal aorta, Radiol- 37. ogy 177 (suppl): 253, 1990.

    Google Scholar 

  21. Conrad MR et al: Real time ultrasound in the diagnosis of acute dissecting aneurysm of the abdominal aorta, AJR Am J Roentgenol 132: 115, 38. 1979.

    Google Scholar 

  22. Kotval PS et al: Role of the intimal flap in arterial dissection: sonographic demonstration, AJR 39. Am J Roentgenol 150: 1181, 1988.

    CAS  Google Scholar 

  23. Jager KA et al: Noninvasive mapping of lower limb arterial lesions, Ultrasound Med Biol 11: 515, 1985. 40.

    Google Scholar 

  24. Kohler TR et al: Duplex scanning for diagnosis of aortoiliac and femoropopliteal disease: a prospective study, Circulation 76: 1074, 1987. 41.

    Google Scholar 

  25. Leng GC et al: Accuracy and reproducibility of duplex ultrasonography in grading femoropopliteal stenoses, J Vasc Surg 17: 510, 1993.

    Article  PubMed  CAS  Google Scholar 

  26. Edwards JM et al: The role of duplex scanning 42. in the selection of patients for transl,nminal angioplasty, J Vasc Surg 13: 69, 1991.

    Article  PubMed  CAS  Google Scholar 

  27. Sacks D et al: Evaluation of the peripheral arteries with duplex US after angioplasty, Radiology 43. 176: 39, 1990.

    Google Scholar 

  28. Idu MM et al: Impact of a color-flow duplex surveillance program on infrainguinal vein graft patency: a five-year experience, J Vasc Surg 17: 42, 1993.

    Article  PubMed  CAS  Google Scholar 

  29. Mattos MA et al: Does correction of stenoses identified with color duplex scanning improve infrainguinal graft patency?, J Vasc Surg 17: 54, 1993.

    Article  PubMed  CAS  Google Scholar 

  30. Killewich LA, Fisher C, Bartlett ST: Surveillance of in situ infrainguinal bypass grafts: conventional vs. color flow duplex ultrasonography, J Cardiovasc Surg 31: 662, 1990.

    CAS  Google Scholar 

  31. Buth J et al: Color-flow duplex criteria for grading stenosis in infrainguinal vein grafts, J Vasc Surg 14: 716, 1991.

    Article  PubMed  CAS  Google Scholar 

  32. Green RM et al: Comparison of infrainguinal graft surveillance techniques, J Vasc Surg 11: 207, 1990.

    PubMed  CAS  Google Scholar 

  33. Kohler TR et al: Noninvasive diagnosis of renal artery stenosis by ultrasonic duplex scanning, J Vasc Surg 4: 450, 1986.

    PubMed  CAS  Google Scholar 

  34. Hoffmann U et al: Role of duplex scanning for the detection of atherosclerotic renal artery disease, Kidney Int 39: 1232, 1991.

    Article  PubMed  CAS  Google Scholar 

  35. Kakkar VV et al: Natural history of postoperative deep-vein thrombosis, Lancet 2: 230, 1969.

    Article  PubMed  CAS  Google Scholar 

  36. Cronan JJ et al: Deep venous thrombosis: US assessment using vein compression, Radiology 162: 191, 1987.

    PubMed  CAS  Google Scholar 

  37. Rose SC et al: Symptomatic lower extremity deep venous thrombosis: accuracy, limitations, and role of color duplex flow imaging in diagnosis, Radiology 175: 639, 1990.

    PubMed  CAS  Google Scholar 

  38. Finlay DE et al: Duplex and color Doppler sonography of hemodialysis arteriovenous fistulas and grafts, Radiographies 13: 983, 1993.

    CAS  Google Scholar 

  39. Finlay DE, Letourneau JG, Longley DG: Assessment of vascular complications of renal, hepatic, and pancreatic transplantation, Radiographics 12: 981, 1992.

    PubMed  CAS  Google Scholar 

  40. Thorsen MK et al: Dissecting aortic aneurysms: accuracy of computed tomographic diagnosis, Radiology 148: 773, 1983.

    PubMed  CAS  Google Scholar 

  41. Papanicolaou N et al: Preoperative evaluation of abdominal aortic aneurysms by computed tomography, AJR Am J Roentgenol 146: 711, 1986.

    PubMed  CAS  Google Scholar 

  42. Zeman RK et al: Abdominal aortic aneurysms: evaluation with variable-collimation helical CT and overlapping reconstruction, Radiology 193: 555, 1994.

    PubMed  CAS  Google Scholar 

  43. Siegel CL et al: Abdominal aortic aneurysm morphology: CT features in patients with rup- tured and nonruptured aneurysms, AJR Am Roentgenol 163: 1123, 1994.

    CAS  Google Scholar 

  44. Heiberg E et al: CT in aortic trauma, AJR Am J Roentgenol 140: 1119, 1983.

    PubMed  CAS  Google Scholar 

  45. Raptopoulos V et al: Traumatic aortic tear: screening with chest CT, Radiology 182: 667, 1992.

    PubMed  CAS  Google Scholar 

  46. Rizzo RJ et al: Computed tomography for eval uation of arterial disease in the popliteal fossa, J Vasc Surg 11: 112, 1990.

    PubMed  CAS  Google Scholar 

  47. Muller N, Morris DC, Nichols DM: Popliteal artery entrapment demonstrated by CT, Radiol- ogy 151: 157, 1984.

    CAS  Google Scholar 

  48. Rubin GD: Three-dimensional helical CT angiography, Radiographics 14: 905, 1994.

    PubMed  CAS  Google Scholar 

  49. Galanski M et al: Renal arterial stenoses: spiral CT angiography, Radiology 189: 185, 1993.

    PubMed  CAS  Google Scholar 

  50. Rubin GD et al: Spiral CT of renal artery steno- sis: comparison of three-dimensional rendering techniques, Radiology 190: 181, 1994.

    PubMed  CAS  Google Scholar 

  51. Rubin GD et al: Three-dimensional CT angiog raphy of the splanchnic vasculature, Radiology 189 (suppl): 229, 1993.

    Google Scholar 

  52. Cumming MJ, Morrow IM: Carotid artery steno- sis: a prospective comparison of CT angiography and conventional angiography, AJR Am J Roentgenol 163: 517, 1994.

    CAS  Google Scholar 

  53. Marks MP et al: Diagnosis of carotid artery disease: preliminary experience with maximum intensity-projection spiral CT angiography, AJR Am J Roentgenol 160: 1267, 1993.

    PubMed  CAS  Google Scholar 

  54. Li KC et al: Oxygen saturation of blood in the superior mesenteric vein: in vivo verification of MR imaging measurements in a canine model. Work in progress, Radiology 194: 321, 1995

    PubMed  CAS  Google Scholar 

  55. De Marco JK et al: Prospective evaluation of extracranial carotid stenosis: MR angiography with maximum-intensity projections and multi- planar reformation compared with conventional angiography, AJR Am J Roentgenol 163: 1205, 1994

    PubMed  Google Scholar 

  56. Laissy JP et al: Thoracic aortic dissection: diagnosis with transesophageal echocardiogra-phy versus MR imaging, Radiology 194: 331, 1995

    PubMed  CAS  Google Scholar 

  57. Kent KC et al: Magnetic resonance imaging: areliable test for the evaluation of proximal ath- erosclerotic renal arterial stenosis, J Vasc Surg 13: 311, 1991.

    Article  PubMed  CAS  Google Scholar 

  58. Yucel EK, Dumoulin CL, Waltman AC: MR angiography of lower-extremity arterial disease:preliminary experience, J Magn Reson Imaging 2: 303, 1992.

    Article  PubMed  CAS  Google Scholar 

  59. Owen RS et al: Magnetic resonance imaging of angiographically occult runoff vessels in peripheral arterial occlusive disease, N Engl J Med 326: 1577, 1992.

    Article  PubMed  CAS  Google Scholar 

  60. Evans AJ et al: Detection of deep venous throm-bosis: prospective comparison of MR imaging with contrast venography, AJR Am J Roentgenol 161: 131, 1993

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Slonim, S.M., Wexler, L. (1999). Image Production and Visualization Systems: Angiography, US, CT, and MRI. In: White, R.A., Fogarty, T.J. (eds) Peripheral Endovascular Interventions. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3105-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3105-7_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3107-1

  • Online ISBN: 978-1-4757-3105-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics