Advanced Topics in Fluorescence Quenching

  • Joseph R. Lakowicz


In the previous chapter we described the basic principles of quenching. A wide variety of quenchers are known. Quenching requires molecular contact between the fluorophore and the quencher. This contact can be due to diffusive encounters (dynamic quenching), or to complex formation (static quenching). Because of the close-range interaction required for quenching, the extent of quenching is sensitive to molecular factors that affect the rate and probability of contact, including steric shielding and charge—charge interactions.


Fluorescence Quenching Spin Label Intensity Decay Advanced Topic Excimer Formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shinitzky, M., Dianoux, A. C., Gitler, C., and Weber, G., 1971, Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluorescence probes I. Synthetic micelles, Biochemistry 10: 2106–2113.CrossRefGoogle Scholar
  2. 2.
    Cogen, U., Shinitzky, M., Weber, G., and Nishida, T., 1973, Micro-viscosity and order in the hydrocarbon region of phospholipid and phospholipid—cholesterol dispersions determined with fluorescent probes, Biochemistry 12: 521–528.CrossRefGoogle Scholar
  3. 3.
    Shinitzky, M., and Barenholz, Y., 1974, Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate, J. Biol. Chem. 249: 2652–2657.Google Scholar
  4. 4.
    Thulborn, K. R., and Sawyer, W. H., 1978, Properties and the locations of a set of fluorescent probes sensitive to the fluidity gradient of the lipid bilayer, Biochim. Biophys. Acta 511: 125–140.CrossRefGoogle Scholar
  5. 5.
    Thulbom, K. R., Tilley, L. M., Sawyer, W. H., and Treloar, F. E., 1979, The use of n-(9-anthroyloxy) fatty acids to determine fluidity and polarity gradients in phospholipid bilayers, Biochim. Biophy. Acta 558: 166–178.CrossRefGoogle Scholar
  6. 6.
    Thulborn, K. R., Treloar, F. E., and Sawyer, W. H., 1978, A micro-viscosity barrier in the lipid bilayer due to the presence of phospholipids containing unsaturated acyl chains, Biochem. Biophys. Res. Commun. 81: 42–49.CrossRefGoogle Scholar
  7. 7.
    Lala, A. K., and Koppaka, V., 1992, Fluorenyl fatty acids as fluorescent probes for depth-dependent analysis of artificial and natural membranes, Biochemistry 31: 5586–5593.CrossRefGoogle Scholar
  8. 8.
    de Bony, J., and Tocanne, J. F., 1984, Photo-induced dimerization of anthracene phospholipids for the study of the lateral distribution of lipids in membranes, Eur. J. Biochem. 143: 373–379.CrossRefGoogle Scholar
  9. 9.
    de Bony, J., and Tocanne, J. E, 1983, Synthesis and physical properties of phosphatidylcholine labelled with 9-(2-anthryl)nonanoic acid, a new fluorescent probe, Chem. Phys. Lipids 32: 105–121.CrossRefGoogle Scholar
  10. 10.
    Liu, L., Cheng, K. H., and Somerharju, P., 1993, Frequency-resolved intramolecular excimer fluorescence study of lipid bilayer and nonbilayer phases, Biophys. J. 64: 1869–1877.CrossRefGoogle Scholar
  11. 11.
    Ollmann, M., Schwarzmann, G., Sandhoff, K., and Galla, H. J., 1987, Pyrene-labeled gangliosides: Micelle formation in aqueous solution, lateral diffusion, and thermotropic behavior in phosphatidylcholine bilayers, Biochemistry 26: 5943–5952.CrossRefGoogle Scholar
  12. 12.
    Chattopadhyay, A., 1990, Chemistry and biology of N-(7-nitrobenz2-oxa-1,3-diazol-4-yl)-labeled lipids: Fluorescent probes of biological and model membranes, Chem. Phys. Lipids 53: 1–15.CrossRefGoogle Scholar
  13. 13.
    Chattopadhyay, A., and London, E., 1988, Spectroscopic and ionization properties of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids in model membranes, Biochim. Biophys. Acta 938: 24–34.CrossRefGoogle Scholar
  14. 14.
    Mazeres, S., Schram, V., Tocanne, J.-F, and Lopez, A., 1996, 7-Nitrobenz-2-oxa-1,3-diazole-4-yl-labeled phospholipids in lipid membranes: Differences in fluorescence behavior, Biophys. J. 71: 327–335.Google Scholar
  15. 15.
    Kalb, E., Paltauf, F., and Hermetter, A., 1989, Fluorescence lifetime distributions of diphenylhexatriene-labeled phosphatidylcholine as a tool for the study of phospholipid—cholesterol interactions, Biophys. J. 56: 1245–1253.CrossRefGoogle Scholar
  16. 16.
    Johnson, I. D., Kang, H. C., and Haugland, R. P., 1991, Fluorescent membrane probes incorporating dipyrrometheneboron difluoride fluorophores, Anal. Biochem. 198: 228–237.CrossRefGoogle Scholar
  17. 17.
    Lakowicz, J. R., and Hogen, D., 1980, Chlorinated hydrocarbon—cell membrane interactions studied by the fluorescence quenching of carbazole-labeled phospholipids: Probe synthesis and characterization of the quenching methodology, Chem. Phys. Lipids 26: 140.CrossRefGoogle Scholar
  18. 18.
    Chalpin, D. B., and Kleinfeld, A. M., 1983, Interaction of fluorescence quenchers with the n-(9-anthroyloxy) fatty acid membrane probes, Biochim. Biophys. Acta 731: 465–474.CrossRefGoogle Scholar
  19. 19.
    Blatt, E., and Sawyer, W. H., 1985, Depth-dependent fluorescent quenching in micelles and membranes, Biochim. Biophys. Acta 822: 43–62.CrossRefGoogle Scholar
  20. 20.
    Moro, F., Goni, E M., and Urbaneja, M. A., 1993, Fluorescence quenching at interfaces and the permeation of acrylamide and iodide across phospholipid bilayers, FEBS Lett. 330: 129–132.CrossRefGoogle Scholar
  21. 21.
    Hariharan, C., Vijaysree, V., and Mishra, A. K., 1997, Quenching of 2,5-diphenyloxazole (PPO) fluorescence by metal ions, J. Lumin. 75: 205–211.CrossRefGoogle Scholar
  22. 22.
    Salthammer, T., Dreeskamp, H., Birch, D. J. S., and Imhof, R. E., 1990, Fluorescence quenching of perylene by Co2+ ions via energy transfer in viscous and non-viscous media, J. Photochem. Photobiol., A: Chem. 55: 53–62.Google Scholar
  23. 23.
    Luisetti, J., Mohwald, H., and Galla, H. J., 1977, Paramagnetic fluorescence quenching in chlorophyll A containing vesicles: Evidence for the localization of chlorophyll, Biochem. Biophys. Res. Commun. 78: 754–760.CrossRefGoogle Scholar
  24. 24.
    Sassaroli, M., Ruonala, M., Virtanen, J., Vauhkonen, M., and Somerharju, P., 1995, Transversal distribution of acyl-linked pyrene moieties in liquid-crystalline phosphatidylcholine bilayers. A fluorescence quenching study, Biochemistry 34: 8843–8851.CrossRefGoogle Scholar
  25. 25.
    Ladokhin, A. S., 1997, Distribution analysis of depth-dependent fluorescence quenching in membranes: A practical guide, Methods Enzymol. 278: 462–473.CrossRefGoogle Scholar
  26. 26.
    Lakokhin, A., Wang, L., Steggles, A. W., and Holloway, P. W., 1991, Fluorescence study of a mutant cytochrome b5 with a single tryptophan in the membrane-binding domain, Biochemistry 30: 10200–10206.CrossRefGoogle Scholar
  27. 27.
    Everett, J., Zlotnick, A., Tennyson, J., and Holloway, P. W., 1986, Fluorescence quenching of cytochrome b5 in vesicles with an asymmetric transbilayer distribution of brominated phosphatidylcholine, J. Biol. Chem. 261: 6725–6729.Google Scholar
  28. 28.
    Gonzalez-Manas, J. M., Lakey, J. H., and Pattus, F., 1992, Brominated phospholipids as a tool for monitoring the membrane insertion of colicin A, Biochemistry 31: 7294–7300.CrossRefGoogle Scholar
  29. 29.
    Silvius, J. R., 1990, Calcium-induced lipid phase separations and interactions of phosphatidylcholine/anionic phospholipid vesicles. Fluorescence studies using carbazole-labeled and brominated phospholipids, Biochemistry 29: 2930–2938.CrossRefGoogle Scholar
  30. 30.
    Silvius, J. R., 1992, Cholesterol modulation of lipid intermixing in phospholipid and glycosphingolipid mixtures. Evaluation using fluorescent lipid probes and brominated lipid quenchers, Biochemistry 31: 3398–3403.CrossRefGoogle Scholar
  31. 31.
    Chattopadhyay, A., and London, E., 1987, Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids, Biochemistry 26: 39–45.CrossRefGoogle Scholar
  32. 32.
    Abrams, F. S., and London, E., 1992, Calibration of the parallax fluorescence quenching method for determination of membrane penetration depth: Refinement and comparison of quenching by spin-labeled and brominated lipids, Biochemistry 31: 5312–5322.CrossRefGoogle Scholar
  33. 33.
    Abrams, E S., Chattopadhyay, A., and London, E., 1992, Determination of the location of fluorescent probes attached to fatty acids using parallax analysis of fluorescence quenching: Effect of carboxyl ionization state and environment on depth, Biochemistry 31: 5322–5327.CrossRefGoogle Scholar
  34. 34.
    Abrams, F S., and London, E., 1993, Extension of the parallax analysis of membrane penetration depth to the polar region of model membranes: Use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup, Biochemistry 32: 10826–10831.CrossRefGoogle Scholar
  35. 35.
    Asuncion-Punzalan, E., and London, E., 1995, Control of the depth of molecules within membranes by polar groups: Determination of the location of anthracene-labeled probes in model membranes by parallax analysis of nitroxide-labeled phospholipid induced fluorescence quenching, Biochemistry 34: 11460–11466.CrossRefGoogle Scholar
  36. 36.
    Kachel, K., Asuncion-Punzalan, E., and London, E., 1995, Anchoring of tryptophan and tyrosine analogs at the hydrocarbon—polar boundary in model membrane vesicles: Parallax analysis of fluorescence quenching induced by nitroxide-labeled phospholipids, Biochemistry 34: 15475–15479.CrossRefGoogle Scholar
  37. 37.
    Ren, J., Lew, S., Wang, Z., and London, E., 1997, Transmembrane orientation of hydrophobic cc-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration, Biochemistry 36: 10213–10220.CrossRefGoogle Scholar
  38. 38.
    Martin, I., Ruysschaert, J.-M., Sanders, D., and Giffard, C. J., 1996, Interaction of the lantibiotic nisin with membranes revealed by fluorescence quenching of an introduced tryptophan, Eur. J. Biochem. 239: 156–164.CrossRefGoogle Scholar
  39. 39.
    Matko, J., Ohki, K., and Edidin, M., 1992, Luminescence quenching by nitroxide spin labels in aqueous solution: Studies on the mechanism of quenching, Biochemistry 31: 703–711.CrossRefGoogle Scholar
  40. 40.
    London, E., and Feigenson, G. W., 1981, Fluorescence quenching in model membranes. 1. Characterization of quenching caused by a spin-labeled phospholipid, Biochemistry 20: 1932–1938.CrossRefGoogle Scholar
  41. 41.
    London, E., and Feigenson, G. W., 1981, Fluorescence quenching in model membranes. 2. Determination of the local lipid environment of the calcium adenosinetriphosphatase from sarcoplasmic reticulum, Biochemistry 20: 1939–1948.CrossRefGoogle Scholar
  42. 42.
    East, J. M., and Lee, A. G., 1982, Lipid selectivity of the calcium and magnesium ion dependent adenosinetriphosphatase, studied with fluorescence quenching by a brominated phospholipid, Biochemistry 21: 4144–4151.CrossRefGoogle Scholar
  43. 43.
    Caffrey, M., and Feigenson, G. W., 1981, Fluorescence quenching in model membranes. 3. Relationship between calcium adenosinetriphosphatase enzyme activity and the affinity of the protein for phosphatidylcholines with different acyl chain characteristics, Biochemistry 20: 1949–1961.CrossRefGoogle Scholar
  44. 44.
    Markello, T., Zlotnick, A., Everett, J., Tennyson, J., and Holloway, P. W., 1985, Determination of the topography of cytochrome b5 in lipid vesicles by fluorescence quenching, Biochemistry 24: 2895–2901.CrossRefGoogle Scholar
  45. 45.
    Froud, R. J., East, J. M., Rooney, E. K., and Lee, A. G., 1986, Binding of long-chain alkyl derivatives to lipid bilayers and to (Ca2+-Mg2+)ATPase, Biochemistry 25: 7535–7544.CrossRefGoogle Scholar
  46. 46.
    Yeager, M. D., and Feigenson, G. W., 1990, Fluorescence quenching in model membranes: Phospholipid acyl chain distributions around small fluorophores, Biochemistry 29: 4380–4392.CrossRefGoogle Scholar
  47. 47.
    Lakowicz, J. R., Hogen, D., and Omann, G., 1977, Diffusion and partitioning of a pesticide, lindane, into phosphatidylcholine bilayers: A new fluorescence quenching method to study chlorinated hydrocarbon—membrane interactions, Biochim. Biophys. Acta 471: 401–411CrossRefGoogle Scholar
  48. 48.
    Omann, G. M., and Glaser, M., 1985, Dynamic quenchers in fluorescently labeled membranes, Biophys. J. 47: 623–627.CrossRefGoogle Scholar
  49. 49.
    Fato, R., Battino, M., Esposti, M. D., Castelli, G. P., and Lenaz, G., 1986, Determination of partition of lateral diffusion coefficients of ubiquinones by fluorescence quenching of n-(9-anthroyloxy)stearic acids in phospholipid vesicles and mitochondrial membranes, Biochemistry 25: 3378–3390.CrossRefGoogle Scholar
  50. 66.
    - resko, R. C., Sugar, I. P., Barenholz, Y., and Thompson, T. E.,1986, Lateral distribution of a pyrene-labeled phosphatidylcholine in phosphatidylcholine bilayers: Fluorescence phase and modulation study, Biochemistry 25: 3813–3823.Google Scholar
  51. 67.
    Nutakul, W., Thummel, R. P., and Taggart, A. D., 1979, Intramolecular excimer-forming probes of aqueous micelles, J. Am. Chem. Soc. 101: 771–772.CrossRefGoogle Scholar
  52. 68.
    Goldenberg, M., Emert, J., and Morawetz, H., 1978, Intramolecular excimer study of rat es of conformational trans itions. Dependence on molecular structure and the viscosity of the medium, J. Am. Chem. Soc. 100: 7171–7177.CrossRefGoogle Scholar
  53. 69.
    Mataga, N., Okada, T., Masuhara, H., Nakashima, N., Sakata, Y., and Misumi, S., 1976, Electronic structure and dynamical behavior of some intramolecular exciplexes, J. Lumin. 12/13: 159–168.Google Scholar
  54. 70.
    Turro, N. J., Okubo, T., and Weed, G. C., 1982, Enhancement of intramolecular excimer formation of 1,3-bichromophoric propanes via application of high pressure and via complexation with cyclodextrins. Protection from oxygen quenching, Photochem. Photobiol. 35: 325–329.CrossRefGoogle Scholar
  55. 71.
    Vauhkonen, M., Sassaroli, M., Somerharju, P., and Eisinger, J., 1990, Dipyrenylphosphatidylcholines as membrane fluidity probes. Relationship between intramolecular and intermolecular excimer formation rates, Biophys. J. 57: 291–300.CrossRefGoogle Scholar
  56. 72.
    Melnick, R. L., Haspel, H. C., Goldenberg, M., Greenbaum, L. M., and Weinstein, S., 1981, Use of fluorescent probes that form intra-molecular excimers to monitor structural changes in model and biological membranes, Biophys. J. 34: 499–515.CrossRefGoogle Scholar
  57. 73.
    Naqvi, K. R., 1974, Diffusion-controlled reactions in two-dimensional fluids: Discussion of measurements of lateral diffusion of lipids in biological membranes, Chem. Phys. Lett. 28: 280–284.CrossRefGoogle Scholar
  58. 74.
    Owen, C. S., 1975, Two dimensional diffusion theory: Cylindrical diffusion model applied to fluorescence quenching, J. Chem. Phys. 62: 3204–3207.CrossRefGoogle Scholar
  59. 75.
    Medhage, B., and Almgren, M., 1992, Diffusion-influenced fluorescence quenching: Dynamics in one to three dimensions, J. Fluoresc. 2: 7–21.CrossRefGoogle Scholar
  60. 76.
    Caruso, F., Grieser, F., and Thistlethwaite, P. J., 1993, Lateral diffusion of amphiphiles in fatty acid monolayers at the air—water interface: A steady-state and time-resolved fluorescence quenching study, Langmuir 9: 3142–3148.CrossRefGoogle Scholar
  61. 77.
    Blackwell, M. F., Gounaris, K., Zara, S. J., and Barber, J., 1987, A method for estimating lateral diffusion coefficients in membranes from steady-state fluorescence quenching studies, Biophys. J. 51: 735–744.CrossRefGoogle Scholar
  62. 78.
    Caruso, F., Grieser, F., Thistlethwaite, P. J., and Almgren, M., 1993, ‘Rim-dimensional diffusion of amphiphiles in phospholipid mono-layers at the air—water interface, Biophys. J. 65: 2493–2503.Google Scholar
  63. 79.
    Eftink, M. R., and Ghiron, C. A., 1984, Indole fluorescence quenching studies on proteins and model systems: Use of the inefficient quencher succinimide, Biochemistry 23: 3891–3899.CrossRefGoogle Scholar
  64. 80.
    Eftink, M. R., Selva, T. J., and Wasylewski, Z., 1987, Studies of the efficiency and mechanism of fluorescence quenching reactions using acrylamide and succinimide as quenchers, Photochem. Photobiol. 46: 23–30.CrossRefGoogle Scholar
  65. 81.
    Samson, R., and Deutch, J. M., 1978, Diffusion-controlled reaction rate to a buried active site, J. Chem. Phys. 68: 285–290.CrossRefGoogle Scholar
  66. 82.
    Shoup, D., Lipari, G., and Szabo, A., 1981, Diffusion-controlled bimolecular reaction rates, Biophys. J. 36: 697–714.CrossRefGoogle Scholar
  67. 83.
    Solc, K., and Stockmayer, W. H., 1973, Kinetics of diffusion-controlled reaction between chemically asymmetric molecules. II. Approximate steady state solution, Int. J. Chem. Kinet. 5: 733–752.CrossRefGoogle Scholar
  68. 84.
    Schmitz, K. S., and Schurr, J. M., 1972, The role of orientation constraints and rotational diffusion in bimolecular solution kinetics, J. Phys. Chem. 76: 534–545.CrossRefGoogle Scholar
  69. 85.
    Johnson, D. A., and Yguerabide, J., 1985, Solute accessibility to N-fluorescein isothiocyanate-lysine-23 cobra a-toxin bound to the acetylcholine receptor, Biophys. J. 48: 949–955.CrossRefGoogle Scholar
  70. 86.
    Somogyi, B., and Lakos, Z., 1993, Protein dynamics and fluorescence quenching, J. Photochem. Photobiol., B: Biol. 18: 3–16.Google Scholar
  71. 87.
    Nemzek, T. L., and Ware, W. R., 1975, Kinetics of diffusion-controlled reactions: Transient effects in fluorescence quenching, J. Chem. Phys. 62: 477–489.CrossRefGoogle Scholar
  72. 88.
    Bamford, C. H., Tipper. C. P. H., and Compton, R. G., 1985, Chemical Kinetics Elsevier, New York.Google Scholar
  73. 89.
    Smoluchowski, V. M., 1916, Drei voltage über diffusion, brownsche molekularbewegung and koagulation von kolloidteilchen [Three lectures on diffusion, Brownian molecular motion and coagulation of colloids], Physik. Z. 17:557–571, 585–599.Google Scholar
  74. Chandrasekhar, S., Kac, M., and Smoluchowski, R., 1986, Marian Smoluchowski, His Life and Scientific Work, Polish Scientific Publishers, Warsaw.Google Scholar
  75. 90.
    Collins, F. C., and Kimball, G. E., 1949, Diffusion-controlled reaction rates, J. Colloid Sci. 4: 425–437.CrossRefGoogle Scholar
  76. Collins, E. C., 1950, J. Colloid Sci. 5:499–505 for correction.Google Scholar
  77. 91.
    Yguerabide, J., Dillon, M. A., and Burton, M., 1964, Kinetics of diffusion-controlled processes in liquids. Theoretical consideration of luminescent systems: Quenching and excitation transfer in collision, J. Chem. Phys. 40: 3040–3052.CrossRefGoogle Scholar
  78. 92.
    Marcus, R. A., 1993, Electron transfer reactions in chemistry: Theory and experiment (Nobel lecture), Angew. Chem. Int. Ed. Engl. 32: 1111–1121.CrossRefGoogle Scholar
  79. 93.
    Turro, N. J., 1978, Modern Molecular Photochemistry, Benjamin Cummings Publishing Co., Menlo Park, California.Google Scholar
  80. 94.
    Ware, W. R., and Novros, J. S., 1966, Kinetics of diffusion-controlled reactions. An experimental test of theory as applied to fluorescence quenching, J. Phys. Chem. 70: 3246–3253.CrossRefGoogle Scholar
  81. 95.
    Ware, W. R., and Andre, J. C., 1980, The influence of diffusion on fluorescence quenching, in Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology, R. B. Cundall and R. E. Dale (eds.), Plenum Press, New York, pp. 363–392.Google Scholar
  82. 96.
    Lakowicz, J. R., Johnson, M. L., Gryczynski, I., Joshi, N., and Laczko, G., 1987, Transient effects in fluorescence quenching measured by 2-GHz frequency-domain fluorometry, J. Phys. Chem. 91: 3277–3285.CrossRefGoogle Scholar
  83. 97.
    Periasamy, N., Doraiswamy, S., Venkataraman, B., and Fleming, G. R., 1988, Diffusion controlled reactions: Experimental verification of the time-dependent rate equation, J. Chem. Phys. 89: 47994806.Google Scholar
  84. 98.
    Lakowicz, J. R., Kutba, J., Szmacinski, H., Johnson, M. L., and Gryczynski, I., 1993, Distance-dependent fluorescence quenching observed by frequency-domain fluorometry, Chem. Phys. Lett. 206: 455–463.CrossRefGoogle Scholar
  85. 99.
    Lakowicz, J. R., Zelent, B., Gryczynski, I., Kulba, J., and Johnson, M. L., 1994, Distance-dependent fluorescence quenching of tryptophan by acrylamide, Photochem. Photobiol. 60: 205–214.CrossRefGoogle Scholar
  86. 100.
    Zelent, B., Kuiba, J., Gryczynski, I., Johnson, M. L., and Lakowicz, J. R., 1996, Distance-dependent fluorescence quenching ofp-bis[2(5-phenyloxazolyl)]benzene by various quenchers, J. Phys. Chem. 100: 18592–18602.CrossRefGoogle Scholar
  87. 101.
    Lakowicz, J. R., Zelent, B., Kuiba, J., and Gryczynski, I., 1996, Distance-dependent quenching of nile blue fluorescence by N,Ndiethylaniline observed by frequency-domain fluorometry, J. Fluoresc. 6: 187–194.CrossRefGoogle Scholar
  88. 102.
    Kugba, J., and Lakowicz, J. R., 1994, Diffusion-modulated energy transfer and quenching: Analysis by numerical integration of diffusion equation in Laplace space, Methods Enzymol. 240: 216–262.CrossRefGoogle Scholar
  89. 103.
    Kutba, J., 1998, Personal communication.Google Scholar
  90. 104.
    Winjaendts Van Resandt, R. W., 1983, Picosecond transient effect in the fluorescence quenching of tryptophan, Chem. Phys. Lett. 95: 205–208.Google Scholar
  91. 105.
    Gryczynski, I., Johnson, M. L., and Lakowicz, J. R., 1988, Acryl-amide quenching of Vt.-base fluorescence in aqueous solution, Biophys. Chem. 31: 269–274.CrossRefGoogle Scholar
  92. 106.
    Lakowicz, J. R., Joshi, N. B., Johnson, M. L., Szmacinski, H., and Gryczynski, I., 1987, Diffusion coefficients of quenchers in proteins from transient effects in the intensity decays, J. Biol. Chem. 262:10907–10910.Google Scholar
  93. 107.
    Eftink., M. R., 1990, Transient effects in the solute quenching of tryptophan residues in proteins, Proc. SPIE 1204: 406–414.CrossRefGoogle Scholar
  94. 108.
    Vanderkooi, J. M., Englander, S. W., Papp, S., Wright, W. W., and Owen, C. S., 1990, Long-range electron exchange measured in proteins by quenching of tryptophan phosphorescence, Proc. Natl. Acad. Sci. U.S.A. 87: 5099–5103.CrossRefGoogle Scholar
  95. 109.
    Nelson, G., and Warner, I. M., 1990, Fluorescence quenching studies of cyclodextrin complexes of pyrene and naphthalene in the presence of alcohols, J. Phys. Chem. 94: 576–581.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Joseph R. Lakowicz
    • 1
  1. 1.University of Maryland School of MedicineBaltimoreUSA

Personalised recommendations