Frequency-Domain Lifetime Measurements

  • Joseph R. Lakowicz


In the preceding chapter we described the theory and instrumentation for measuring fluorescence intensity decays using time-domain measurements. In the present chapter we continue this discussion, but we now consider the alternative method called frequency-domain (FD) fluorometry. In this method the sample is excited with light which is intensity-modulated at a high frequency comparable to the reciprocal of the lifetime. When this is done, the emission is also intensity-modulated at the same frequency. However, the emission does not precisely follow the excitation but rather shows time delays and amplitude changes which are determined by the intensity decay law of the sample. To be more precise, the time delay is measured as a phase-angle shift between the excitation and emission, as was shown in Figure 4.2. The peak-to-peak height of the modulated emission is decreased relative to that of the modulated excitation and provides another independent measure of the lifetime.


Decay Time Phase Angle Fluorescence Lifetime Anthranilic Acid Lifetime Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gratton, E., and Limkeman M., 1983, A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution, Biophys. J. 44: 315–324.CrossRefGoogle Scholar
  2. 2.
    Lakowicz, J. R., and Maliwal, B. P., 1985, Construction and performance of a variable-frequency phase-modulation fluorometer, Biophys. Chem. 21: 61–78.CrossRefGoogle Scholar
  3. 3.
    Lakowicz, J. R., and Gryczynski, I., 1991, Frequency-domain fluorescence spectroscopy, in Topics in Fluorescence Spectroscopy, Volume 1, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 293–355.Google Scholar
  4. 4.
    Gratton, E., 1984, The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry, Appl. Spectrosc. Rev. 20 (1): 55–106.CrossRefGoogle Scholar
  5. 5.
    Gratton, E., Jameson, D. M., and Hall, R. D., 1984, Multifrequency phase and modulation fluorometry, Annu. Rev. Biophys. Bioeng. 13: 105–124.CrossRefGoogle Scholar
  6. 6.
    Lakowicz, J. R., 1986, Biochemical applications of frequency-domain fluorometry, in Applications of Fluorescence in the Biomedical Sciences, D. Lansing, A. S. Waggoner, F. Lanni, R. F. Murphy, and R. R. Birge (eds.), Alan R. Liss, New York, pp. 225–244.Google Scholar
  7. 7.
    Bright, F. V., Betts, T. A., and Litwiler, K. S., 1990, Advances in multifrequency phase and modulation fluorescence analysis, Anal. Chem. 21: 389–405.Google Scholar
  8. 8.
    Lakowicz, J. R., 1985, Frequency-domain fluorometry for resolution of time-dependent fluorescence emission, Spectroscopy 1: 28–37.Google Scholar
  9. 9.
    Rabinovich, E. M., O’Brien, M., Srinivasan, B., Elliott, S., Long, X.-C., and Ravinder, K. J., 1998, A compact, LED-based phase fluorimeter-detection system for chemical and biosensor arrays, Proc. SPIE 3258: 2–10.CrossRefGoogle Scholar
  10. 10.
    Bevington, R R., 1969, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York.Google Scholar
  11. 11.
    Taylor, J. R., 1982, An Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements, University Science Books, Mill Valley, California.Google Scholar
  12. 12.
    Lakowicz, J. R., Laczko, G., Cherek, H., Gratton, E., andLimkeman, M., 1984, Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data, Biophys. J. 46: 463–477.CrossRefGoogle Scholar
  13. 13.
    Gratton, E., Limkeman, M., Lakowicz, J. R., Maliwal, B., Cherek, H., and Laczko, G., 1984, Resolution of mixtures of fluorophores using variable-frequency phase and modulation data, Biophys, J. 46: 479–486.CrossRefGoogle Scholar
  14. 14.
    Straume, M., Frasier-Cadoret, S. G., and Johnson, M. L., 1991, Least-squares analysis of fluorescence data, in Topics in Fluorescence Spectroscopy, Volume 2, Principles, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 177–239.Google Scholar
  15. 15.
    Johnson, M. L., 1994, Use of least-squares techniques in biochemistry, Methods Enzymol. 240: 1–22.CrossRefGoogle Scholar
  16. 16.
    Johnson, M. L., and Faunt, L. M., 1992, Parameter estimation by least-squares methods, Methods Enzymol. 210: 1–37.CrossRefGoogle Scholar
  17. 17.
    Klein, U. K. A., 1984, Picosecond fluorescence decay studied by phase fluorometry and its application to the measurement of rotational diffusion in liquids, Arabian J. Sei. Eng. 9 (4): 327–344.Google Scholar
  18. 18.
    Gaviola, Z., 1926, Ein Fluorometer, apparat zur messung von fluo-reszenzabklingungszeiten, Z Phys. 42: 853–861.CrossRefGoogle Scholar
  19. 19.
    Wood, R. W, 1921, The time interval between absorption and emission of light in fluorescence, Pwc. R. Soc. London (A) 99: 362–371.CrossRefGoogle Scholar
  20. 20.
    Abraham and Lemoine, 1899, C. R. Hebd. Seance Acad. Sei. 129:206, as cited in Ref. 23.Google Scholar
  21. 21.
    Duschinsky, V. F., 1933, Der zeitliche intensitatsverlauf von intermittierend angeregter resonanzstrahlung, Z Phys. 81: 7–22.CrossRefGoogle Scholar
  22. 22.
    Szymanowski, W., 1935, Verbesserte fluorometermethode zur messung der abklingzeiten der fluoreszensatrahlung, Z Phys. 95: 440–449.CrossRefGoogle Scholar
  23. 23.
    Tumerman, L. A., 1941, On the law of decay of luminescence of complex molecules, J. Phys. (USSR) 4: 151–166.Google Scholar
  24. 24.
    Maercks, V. O., 1938, Neuartige fluorometer, Z Phys. 109: 685–699.CrossRefGoogle Scholar
  25. 25.
    Hupfeld, V. H.-H., 1929, Die nachleuchtdauern der J2-, K2, Na2- und Na-resonanzstrahlung, Z Phys. 54: 484–497.CrossRefGoogle Scholar
  26. 26.
    Schmillen, A., 1953, Abklingzeitmessungen an flussigen und festen losungen mit einem neuen fluorometer, Z Phys.. 135: 294–308.CrossRefGoogle Scholar
  27. 27.
    Galanin, M. D., 1950, Duration of the excited state of a molecule and the properties of fluorescent solutions, Tr. Fit Inst. Akad. Nauk SSSR 5: 339–386.Google Scholar
  28. 28.
    Birks, J. B., and Little, W. A., 1953, Photo-fluorescence decay times of organic phosphors, Proc. Phys. Soc. A66: 921–928.Google Scholar
  29. 29.
    Resewitz, V. E.-R, and Lippert, E., 1974, Ein neuartiges phasen-fluorometer, Ber. Bunsenges. Phys. Chem. 78: 1227–1229.Google Scholar
  30. 30.
    Labhart, V. H., 1964, Eine experimentelle methode zur ermittlung der singulett-triplett-konversionswahrscheinlichkeit und der triplett-spektren von gelosten organischen molekeln messungen an 1,2-ben-zanthracen, Fasciculus S 252: 2279–2288.Google Scholar
  31. 31.
    Bailey, E. A., and Rollefson, G. K., 1953, The determination of the fluorescence lifetimes of dissolved substances by a phase shift method, J. Chem. Phys. 21: 1315–1326.CrossRefGoogle Scholar
  32. 32.
    Bonch-Breuvich, A. M., Kazarin, I. M., Molchanov, V. A., and Shirokov, I. V., 1959, An experimental model of a phase fluorometer, Instrum. Exp. Tech. (USSR) 2: 231–236.Google Scholar
  33. 33.
    Bauer, R. K., and Rozwadawski, M., 1959, A new type of fluorometer. Measurements of decay periods of fluorescence of acridine yellow solutions as a function of concentration, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys. 8: 365–368.Google Scholar
  34. 34.
    Birks, J. B., and Dyson, D. J., 1961, Phase and modulation fluorometer, J. Sci. Instrum. 38: 282–285.CrossRefGoogle Scholar
  35. 35.
    Muller, A., Lumry, R., and Kokubun, H., 1965, High-performance phase fluorometer constructed from commercial subunits, Rev. Sci. Instrum. 36: 1214–1226.CrossRefGoogle Scholar
  36. 36.
    Michelbacher, E., 1969, Decay time measurements on pseudo-iso-cyanine by a phase-fluorometer of200 Mc modulation frequency, Z Naturforsch. A 24: 790–796.Google Scholar
  37. 37.
    Demtroder, W., 1962, Bestimmung von oszillatorenstarken durch lebensdauermessungen der ersten angeregten niveaus fur die elemente Ga, Al, Mg, TI und Na, Z Phys.. 42: 42–55.Google Scholar
  38. 38.
    Schlag, E. W., and Wessenhoff, H. V., 1969, Direct timing of the relaxation from selected excited states; beta-naphthylamine, J. Chem. Phys. 51: 2508–2514.CrossRefGoogle Scholar
  39. 39.
    Venetta, B. D., 1959, Microscope phase fluorometer for determining the fluorescence lifetimes of fluorochromes, Rev. Sci. Instrum. 30: 450–457.CrossRefGoogle Scholar
  40. 40.
    Schaefer, V. W., 1956, Bestimmung der schwingungsrelaxationszeit in CO/N2-gasgemischen aus der analyse des frequenzganges eines ultrarot-gasanalysators, Z Angew. Phys. 19: 55–61.Google Scholar
  41. 41.
    Spencer, R. D., and Weber, G., 1969, Measurement of subnansecond fluorescence lifetimes with a cross-correlation phase fluorometer, Ann. N.Y. Acad. Sci. 158: 361–376.CrossRefGoogle Scholar
  42. 42.
    Debye, P., and Sears, F. W., 1932, On the scattering of light by supersonic waves, Proc. Natl. Acad. Sci. U.S.A. 18: 409–414.CrossRefGoogle Scholar
  43. 43.
    Lakowicz, J. R., 1983, Principles of Fluorescence Spectroscopy, Plenum Press, New York, pp. 76–78.CrossRefGoogle Scholar
  44. 44.
    Hauser, M., and Heidt, G., 1975, Phase fluorometer with a continuously variable frequency, Rev. Sci. Instrum. 46: 470–471.CrossRefGoogle Scholar
  45. 45.
    Salmeen, I., and Rimal, L., 1977, A phase-shift fluorometer using a laser and a transverse electrooptic modulator for subnanosecond lifetime measurements, Biophys. J. 20: 335–342.CrossRefGoogle Scholar
  46. 46.
    Menzel, E. R., and Popovic, Z. D., 1978, Picosecond-resolution fluorescence lifetime measuring system with a cw laser and a radio, Rev. Sci. Instrum. 49: 39–44.CrossRefGoogle Scholar
  47. 47.
    Haar, H.-P, and Hauser, M., 1978, Phase fluorometer for measurement of picosecond processes, Rev. Sci. Instrum. 49: 632–633.CrossRefGoogle Scholar
  48. 48.
    Gugger, H., and Calzaferri, G., 1979, Picosecond time resolution by a continuous wave laser amplitude modulation technique I: A critical investigation,/Photochem. 13: 21–33.Google Scholar
  49. 49.
    Gugger, H., and Calzaferri, G., 1980, Picosecond time resolution by a continuous wave laser amplitude modulation technique II: Experimental basis, J. Photochem. 13: 295–307.CrossRefGoogle Scholar
  50. 50.
    Gugger, H., and Calzaferri, G., 1981, Picosecond time resolution by a continuous wave laser amplitude modulation technique III: Dual-beam luminescence experiment, J. Photochem. 16: 31–41.CrossRefGoogle Scholar
  51. 51.
    Baumann, J., and Calzaferri, G., 1983, Development of picosecond time-resolved techniques by continuous-wave laser amplitude modulation IV: Systematic errors, J. Photochem. 22: 297–312.CrossRefGoogle Scholar
  52. 52.
    Baumann, J., and Calzaferri, G., 1983, Development of picosecond time-resolved techniques by continuous-wave V: Elimination of r.f. interference problems, J. Photochem. 23: 387–390.Google Scholar
  53. 53.
    Ide, G., Engelborghs, Y., and Persoons, A., 1983, Fluorescence lifetime resolution with phase fluorometry, Rev. Sci. Instrum. 54: 841–844.CrossRefGoogle Scholar
  54. 54.
    Kaminov, I. P., 1984, An Introduction to Electro-Optic Devices, Academic Press, New York.Google Scholar
  55. 55.
    Wilson, J., and Hawkes, J. F. B., 1983, Optoelectronics: An Introduction, Prentice/Hall International, Englewood Cliff, New Jersey, p. 445.Google Scholar
  56. 56.
    Fedderson, B. A., Piston, D. W., and Gratton, E., 1989, Digital parallel acquisition in frequency domain fluorimetry, Rev. Sei. Instrum. 60: 2929–2936.CrossRefGoogle Scholar
  57. 57.
    Alcala, J. R., 1991, Comment on “Digital parallel acquisition in frequency domain fluorometry,” Rev. Sei. Instrum. 62: 1672–1673.CrossRefGoogle Scholar
  58. 58.
    Barbieri, B., De Piccoli, F., and Gratton, E., 1989, Synthesizers’ phase noise in frequency-domain fluorometry, Rev. Sei. Instrum. 60: 3201–3206.CrossRefGoogle Scholar
  59. 59.
    Levy, R., Guignon, E. F., Cobane, S., St. Louis, E., and Fernandez, S. M., 1997, Compact, rugged and inexpensive frequency-domain fluorometer, Proc. SPIE 2980: 81–89.Google Scholar
  60. 60.
    Lakowicz, J. R., Cherek, H., and Baiter, A., 1981, Correction of timing errors in photomultiplier tubes used in phase-modulation fluorometry, J. Biochem. Biophys. Methods 5: 131–146.CrossRefGoogle Scholar
  61. 61.
    Berndt, K., Dürr, H., and Palme, D., 1983, Picosecond phase fluorometry and color delay error, Opt. Commun. 47 (5): 321–323.CrossRefGoogle Scholar
  62. 62.
    Baumann, J., Calzaferri, G., Forss, L., and Hungentobler, Th., 1985, Wavelength-dependent fluorescence decay: An investigation by multiple-frequency picosecond phase fluorometry, J. Photochem. 28: 457–473.CrossRefGoogle Scholar
  63. 63.
    Pouget, J., Mugnier, J., and Valeur, B., 1989, Correction of systematic phase errors in frequency-domain fluorometry, J. Phys. E: Sei. Instrum. 22: 855–862.CrossRefGoogle Scholar
  64. 64.
    Barrow, D. A., and Lentz, B. R., 1983, The use of isochronal reference standards in phase and modulation fluorescence lifetime measurements, J. Biochem. Biophys. Methods 7: 217–234.CrossRefGoogle Scholar
  65. 65.
    Thompson, R. B., and Gratton, E., 1988, Phase fluorometric method for determination of standard lifetimes, Anal. Chem. 60: 670–674.CrossRefGoogle Scholar
  66. 66.
    Lakowicz, J. R., Jayaweera, R., Joshi, N., and Gryczynski, I., 1987, Correction for contaminant fluorescence in frequency-domain fluorometry, Anal. Biochem. 160: 471–479.CrossRefGoogle Scholar
  67. 67.
    Reinhart, G. D., Marzola, P., Jameson, D. M., and Gratton, E., 1991, A method for on-line background subtraction in frequency domain fluorometry, J. Fluoresc. 1 (3): 153–162.CrossRefGoogle Scholar
  68. 68.
    Gryczynski, I., and Malak, H., unpublished observations.Google Scholar
  69. 69.
    Gryczynski, I., unpublished observations.Google Scholar
  70. 70.
    Lakowicz, J. R., 1989, Principles of frequency-domain fluorescence spectroscopy and applications to protein fluorescence, in Cell Structure and Function by Microspectrofluorometry, E. Kohen and J. G. Hirschberg (eds.), Academic Press, New York, pp. 163–184.Google Scholar
  71. 71.
    Manzini, G., Barcellona, M. L., Avitabile, M., and Quadrifoglio, F., 1983, Interaction of diamidino-2-phenylindole (DAPI) with natural and synthetic nucleic acids, Nucleic Acids Res. 11: 8861–8876.CrossRefGoogle Scholar
  72. 72.
    Cavatorta, P., Masotti, L., and Szabo, A. G., 1985, A time-resolved florescence study of 4’,6-diamidino-2-phenylindole dihydrochloride binding to polynucleotides, Biophys. Chem. 22: 11–16.CrossRefGoogle Scholar
  73. 73.
    Tanious, F. A., Veal, J. M., Buczak, H., Ratmeyer, L. S., and Wilson, W. D., 1992, DAPI (4\6-diamidino-2-phenylindole) binds differently to DNA and RNA: Minor-groove binding at AT sites and intercalation at AU sites, Biochemistry 31: 3103–3112.CrossRefGoogle Scholar
  74. 74.
    Barcellona, M. L., and Gratton, E., 1989, Fluorescence lifetime distributions of DNA-4’,6-diamidino-2-phenylindole complex, Bio-chim. Biophys. Acta 993: 174–178.CrossRefGoogle Scholar
  75. 75.
    Barcellona, M. L., and Gratton, E., 1990, The fluorescence properties of a DNA probe, Eur. Biophys. J. 17: 315–323.CrossRefGoogle Scholar
  76. 76.
    Lakowicz, J. R., Szmacinski, H., Nowaczyk, N., and Johnson, M. L., 1992, Fluorescence lifetime imaging of calcium using quin-2, Cell Calcium 13: 131–147.CrossRefGoogle Scholar
  77. 77.
    Miyoshi, N., Hara, K., Kimura, S., Nakanishi, K., and Fukuda, M., 1991, A new method of determining intracellular free Ca2+ concentration using Quin-2 fluorescence, Photochem. Photobiol. 53: 415–418.CrossRefGoogle Scholar
  78. 78.
    Hirshfield, K. M., Toptygin, D., Packard, B. S, and Brand, L., 1993, Dynamic fluorescence measurements of two-state systems: Applications to calcium-chelating probes, Anal. Biochem. 209: 209–218.CrossRefGoogle Scholar
  79. 79.
    Illsley, N. P., and Verkman, A. S., 1987, Membrane chloride transport measured using a chloride-sensitive fluorescent probe, Biochemistry 26: 1215–1219.CrossRefGoogle Scholar
  80. 80.
    Verkman, A. S., 1990, Development and biological applications of chloride-sensitive fluorescent indicators, Am. J. Physiol. 253:C375- C388.Google Scholar
  81. 81.
    Verkman, A. S., Sellers, M. C., Chao, A. C., Leung, T., and Ketcham, R., 1989, Synthesis and characterization of improved chloride-sensitive fluorescent indicators for biological applications, Anal. Biochem. 178: 355–361.CrossRefGoogle Scholar
  82. 82.
    Szmacinski, H., and Lakowicz, J. R., unpublished observations.Google Scholar
  83. 83.
    Lakowicz, J. R. (ed.), 1997, Topics in Fluorescence Spectroscopy, Volume 5 Nonlinear and Two-Photon Induced Fluorescence Plenum Press, New York, 544 pp.Google Scholar
  84. 84.
    Dattelbaum, J. D., Castellano, F. N., Gryczynski, I., and Lakowicz, J. R., 1998, Two-photon spectroscopic properties of a mutant green fluorescent protein, Biphysical Society Meeting, March, 1998, Kansas City, Missouri.Google Scholar
  85. 85.
    Swaminathan, R., Hoang, C. P., and Verkman, A. S., 1997, Pho-tobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: Cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion, Biophys. J. 72: 1900–1907.CrossRefGoogle Scholar
  86. 86.
    Kusba, J., and Lakowicz, J. R., 1994, Diffusion-modulated energy transfer and quenching: Analysis by numerical integration of diffusion equation in Laplace space, Methods Enzymol. 240: 216–262.CrossRefGoogle Scholar
  87. 87.
    Lakowicz, J. R., Cherek, H., Gryczynski, I., Joshi, N., and Johnson, M. L., 1987, Analysis of fluorescence decay kinetics measured in the frequency domain using distributions of decay times, Biophys. Chem. 28: 35–50.CrossRefGoogle Scholar
  88. 88.
    Alcala, J. R., Gratton, E., and Prendergast, F. G., 1987, Resolvability of fluorescence lifetime distributions using phase fluorometry, Biophys. J. 51: 587–596.CrossRefGoogle Scholar
  89. 89.
    Foguel, D., Chaloub, R. M., Silva, J. L., Crofts, A. R., and Weber, G., 1992, Pressure and low temperature effects on the fluorescence emission spectra and lifetimes of the photosynthetic components of cyanobacteria, Biochem. J. 63: 1613–1622.Google Scholar
  90. 90.
    Alcala, J. R., Gratton, E., and Prendergast, F. G., 1987, Fluorescence lifetime distributions in proteins, Biophys. J. 51: 597–604.CrossRefGoogle Scholar
  91. 91.
    Alcala, J. R., Gratton, E., and Prendergast, F. G., 1987, Interpretation of fluorescence decays in proteins using continuous lifetime distributions, Biophys. J. 51: 925–936.CrossRefGoogle Scholar
  92. 92.
    Lakowicz, J. R., Gryczynski, I., Wiczk, W., and Johnson, M. L., 1994, Distributions of fluorescence decay times for synthetic melit-tin in water-methanol mixtures and complexed with calmodulin, troponin C, and phospholipids, J. Fluoresc. 4 (2): 169–177.CrossRefGoogle Scholar
  93. 93.
    Gryczynski, I., Wiczk, W., Inesi, G., Squier, T., and Lakowicz, J. R., 1989, Characterization of the tryptophan fluorescence from sarcoplasmic reticulum adenosinetriphosphatase by frequency-domain fluorescence spectroscopy, Biochemistry 28: 3490–3498.CrossRefGoogle Scholar
  94. 94.
    Visser, A. J. W. G., and van Hoek, A., 1981, The fluorescence decay of reduced nicotinamides in aqueous solution after excitation with a uv-mode locked Ar ion laser, Photochem. Photobiol. 33: 35–40.CrossRefGoogle Scholar
  95. 95.
    Merkelo, H. S., Hartman, S. R., Mar, T., Singhai, G. S., and Govindjee, 1969, Mode-locked lasers: Measurements of very fast radiative decay in fluorescent systems, Science 164: 301–303.CrossRefGoogle Scholar
  96. 96.
    Gratton, E., and Lopez-Delgado, R., 1980, Measuring fluorescence decay times by phase-shift and modulation techniques using the high harmonic content of pulsed light sources, Nuovo Cimento B56:1 10–124.Google Scholar
  97. 97.
    Gratton, E., Jameson, D. M., Rosato, N., and Weber, G., 1984, Multifrequency cross-correlation phase fluorometer using synchrotron radiation, Rev. Sei. Instrum. 55: 486–494.CrossRefGoogle Scholar
  98. 98.
    Gratton, E., and Delgado, R. L., 1979, Use of synchrotron radiation for the measurement of fluorescence lifetimes with subpicosecond resolution, Rev. Sei. Instrum. 50: 789–790.CrossRefGoogle Scholar
  99. 99.
    Berndt, K., Duerr, H., and Palme, D., 1982, Picosecond phase fluorometry by mode-locked CW lasers, Opt. Commun. 42: 419–422.CrossRefGoogle Scholar
  100. 100.
    Gratton, E., and Barbieri, B., 1986, Multifrequency phase fluorometry using pulsed sources: Theory and applications, Spectroscopy 1 (6): 28–36.Google Scholar
  101. 101.
    Lakowicz, J. R., Laczko, G., and Gryczynski, I., 1986, 2-GHz frequency-domain fluorometer, Rev. Sei. Instrum. 57: 2499–2506.Google Scholar
  102. 102.
    Laczko, G., Gryczynski, I., Gryczynski, Z., Wiczk, W., Malak, H., and Lakowicz, J. R., 1990, A 10-GHz frequency-domain fluorometer, Rev. Sei. Instrum. 61: 2331–2337.CrossRefGoogle Scholar
  103. 103.
    Lakowicz, J. R., Laczko, G., Gryczynski, I., Szmacinski, H., and Wiczk, W, 1989, Frequency-domain fluorescence spectroscopy: Principles, biochemical applications and future developments, Ber. Bunsenges. Phys. Chem. 93: 316–327.CrossRefGoogle Scholar
  104. 104.
    Lakowicz, J. R., Laczko, G., Gryczynski, I., Szmacinski, H., and Wiczk, W., 1988, Gigahertz frequency domain fluorometry: Resolution of complex decays, picosecond processes and future developments, J. Photochem. Photobiol. B: Biol. 2: 295–311.CrossRefGoogle Scholar
  105. 105.
    Berndt, K., Durr, H., and Palme, D., 1985, Picosecond fluorescence lifetime detector, Opt. Commun. 55 (4): 271–276.CrossRefGoogle Scholar
  106. 106.
    Berndt, K., 1987, Opto-electronic high-frequency cross-correlation using avalanche photodiodes, Measurement 5 (4): 159–166.CrossRefGoogle Scholar
  107. 107.
    Berndt, K., Klose, E., Schwarz, P., Feller, K.-H, and Faßler, D., 1984, Time resolved fluorescence spectroscopy of cyanine dyes, Z Phys. Chem. 265: 1079–1086.Google Scholar
  108. 108.
    Berndt, K., Durr, H., and Feller, K.-H., 1987, Time resolved fluorescence spectroscopy of cyanine dyes, Z Phys. Chem. 268: 250–256.Google Scholar
  109. 109.
    Lakowicz, J. R., Gryczynski, I., Laczko, G., and Gloyna, D., 1991, Picosecond fluorescence lifetime standards for frequency-and time-domain fluorescence, J. Fluoresc. 1 (2): 87–93.CrossRefGoogle Scholar
  110. 110.
    Gryczynski, I., Szmacinski, H., Laczko, G., Wiczk, W., Johnson, M. L., Kusba, J., and Lakowicz, J. R., 1991, Conformational differences of oxytocin and vasopressin as observed by fluorescence anisotropy decays and transient effects in collisional quenching of tyrosine fluorescence, J. Fluoresc. 1 (3): 163–176.CrossRefGoogle Scholar
  111. 111.
    Vos, R., Strobbe, R., and Engelborghs, Y., 1997, Gigahertz phase fluorometry using a fast high-gain photomultiplier, J. Fluoresc. 7 (1): 33S–35S.Google Scholar
  112. 112.
    Berndt, K. W, Gryczynski, I., and Lakowicz, J. R., 1990, Phase-modulation fluorometry using a frequency-doubled pulsed laser diode light source, Rev. Sei. Instrum. 61: 1816–1820.CrossRefGoogle Scholar
  113. 113.
    Thompson, R. B., Frisoli, J. K., and Lakowicz, J. R., 1992, Phase fluorometry using a continuously modulated laser diode, Anal. Chem. 64: 2075–2078.CrossRefGoogle Scholar
  114. 114.
    Sipior, J., Carter, G. M., Lakowicz, J. R., and Rao, G., 1996, Single quantum well light emitting diodes demonstrated as excitation sources for nanosecond phase-modulation fluorescence lifetime measurements, Rev. Sci. Instrum. 67: 3795–3798.CrossRefGoogle Scholar
  115. 115.
    Sipior, J., Carter, G. M., Lakowicz, J. R., and Rao, G., 1997, Blue light emitting diode demonstrated as an ultraviolet excitation source for nanosecond phase-modulation fluorescence lifetime measurements, Rev. Sci. Instrum. 68: 2666–2670.CrossRefGoogle Scholar
  116. 116.
    Fantini, S., Franceschini, M. A., Fishkin, J. B., Barbieri, B., and Gratton, E., 1994, Quantitative determination of the absorption spectra of chromophores in strongly scattering media: A light-emitting diode based technique, Appl. Opt. 33: 5204–5213.CrossRefGoogle Scholar
  117. 117.
    Berndt, K. W, and Lakowicz, J. R., 1992, Electroluminescent lamp-based phase fluorometer and oxygen sensor, Anal. Biochem. 201: 319–325.CrossRefGoogle Scholar
  118. 118.
    Morgan, C. G., Hua, Y., Mitchell, A. C., Murray, J. G., and Board-man, A. D., 1996, A compact frequency domain fluorometer with a directly modulated deuterium light source, Rev. Sci. Instrum. 67: 41–47.CrossRefGoogle Scholar
  119. 119.
    Holavanahali, R., Romauld, M., Carter, G. M., Rao, G., Sipior, J., Lakowicz, J. R., and Bierlein, J. D., 1996, Directly modulated diode laser frequency doubled in a KTP waveguide as an excitation source for C02 and 02 phase fluorometric sensors, J. Biomed. Opt. 1: 124–130.CrossRefGoogle Scholar
  120. 120.
    Guo, X.-Q., Castellano, F. N., Li, L., Szmacinski, H., and Lakowicz, J. R., 1997, A long-lived, highly luminescent Re(I) metal-ligand complex as a biomolecular probe, Anal. Biochem. 254: 179–186.CrossRefGoogle Scholar
  121. 121.
    Szmacinski, H., and Lakowicz, J. R., 1993, Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry, Anal. Chem. 65: 1668–1674.CrossRefGoogle Scholar
  122. 122.
    Thompson, R. B., and Lakowicz, J. R., 1993, Fiber optic pH sensor based on phase fluorescence lifetimes, Anal. Chem. 65: 853–856.CrossRefGoogle Scholar
  123. 123.
    O’Keefe, G., MacCraith, B. D., McEvoy, A. K., McDonagh, C. M., and McGilp, J. F., 1995, Development of a LED-based phase fluorimetric oxygen sensor using evanescent wave excitation of a sol-gel immobilized gel, Sensors Actuat. 29: 226–230.CrossRefGoogle Scholar
  124. 124.
    Lippitsch, M. E., Pasterhofer, J., Leiner, M. J. P., and Wolfbeis, O. S., 1988, Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier, Anal. Chim. Acta 205: 1–6.CrossRefGoogle Scholar
  125. 125.
    Sipior, J., Randers-Eichhorn, L., Lakowicz, J. R., Carter, G. M., and Rao, G., 1996, Phase fluorometric optical carbon dioxide gas sensor for fermentation off-gas monitoring, Biotechnol. Prog. 12: 266–271.CrossRefGoogle Scholar
  126. 126.
    Cobb, W. T., and McGown, L. B., 1987, Phase-modulation fluorometry for on-line liquid chromatographic detection and analysis of mixtures of benzo(fc)fluoranthene and benzo(fc)fluoran-thene, Appl. Spectrosc. 41: 1275–1279.CrossRefGoogle Scholar
  127. 127.
    Cobb, W. T., and McGown, L. B., 1989, Multifrequency phase-modulation fluorescence lifetime determinations on-the-fly in HPLC, Appl. Spectrosc. 43: 1363–1367.CrossRefGoogle Scholar
  128. 128.
    Cobb, W. T., Nithipatikom, K., and McGown, L. B., 1988, Multi-component detection and determination of polycyclic aromatic hydrocarbons using HPLC and a phase-modulation spec-trofluorometer, Special Technical Publication, American Society for Testing and Materials, Vol. 1009, pp. 12–25.Google Scholar
  129. 129.
    Szmacinski, H., and Lakowicz, J. R., 1994, Lifetime-based sensing, in Topics in Fluorescence Spectroscopy, Vol. 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 295–334.Google Scholar
  130. 130.
    Lakowicz, J. R., Jayaweera, R., Szmacinski, H., and Wiczk, W., 1990, Resolution of multicomponent fluorescence emission using frequency-dependent phase angle and modulation spectra, Anal. Chem. 62: 2005–2012.CrossRefGoogle Scholar
  131. 131.
    Lakowicz, J. R., Jayaweera, R., Szmacinski, H., and Wiczk, W., 1989, Resolution of two emission spectra for tryptophan using frequency-domain phase-modulation spectra, Photochem. Photo-biol. 50: 541–546.CrossRefGoogle Scholar
  132. 132.
    Kilin, S. F., 1962, The duration of photo-and radioluminescence of organic compounds, Opt. Spectwsc. 12: 414–416.Google Scholar
  133. 133.
    Jameson, D. M., Gratton, E., and Hall, R. D., 1984, The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry, Appl. Spectrosc. Rev. 20(1):55-106.Google Scholar
  134. 134.
    Ware, W. R., 1971, Transient luminescence measurements, in Creation and Detection of the Excited State, A. A. Lamola (ed.), Marcel Dekker, New York, pp. 213–302.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Joseph R. Lakowicz
    • 1
  1. 1.University of Maryland School of MedicineBaltimoreUSA

Personalised recommendations