Skip to main content

Abstract

In the preceding chapters we saw many examples of excited-state reactions. By an excited-state reaction we mean a molecular process which changes the structure of the excited-state fluorophore, and which occurs subsequent to excitation. Such reactions occur because light absorption frequently changes the electron distribution within a fluorophore, which in turn changes its chemical or physical properties. The best-known example of an excited-state reaction is that of phenol, which in neutral solution can lose the phenolic proton in the excited state. Deprotonation occurs more readily in the excited state because the electrons on the phenolic hydroxyl groups are shifted into the phenol ring, making this hydroxyl group more acidic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ireland, J. F., and Wyatt, P. A. H., 1976, Acid-base properties of electronically excited states of organic molecules, in Advances in Physical Organic Chemistry, V. Gold and D. Bethell (eds.), Academic Press, New York, pp. 132–215.

    Google Scholar 

  2. Wan, P., and Shukla, D., 1993, Utility of acid-base behavior of excited states of organic molecules, Chenu Rev. 93: 571–584.

    Article  CAS  Google Scholar 

  3. Martynov, I. Y., Demyashkevich, A. B., Uzhinov, B. M., and Kuz’min, M. G., 1977, Proton transfer reactions in the excited electronic states of aromatic molecules, Usp. Khim. (Russian Chemical Physics) 46: 3–31.

    CAS  Google Scholar 

  4. Shizuka, H., 1985, Excited state proton-transfer reactions and proton-induced quenching of aromatic compounds, Acc. Chem. Res. 18: 141–147.

    Article  CAS  Google Scholar 

  5. Schulman, S. G., 1976, Acid-base chemistry of excited singlet states, in Modern Fluorescence Spectroscopy, E. L. Wehry (ed.), Plenum Press, New York, pp. 239–275.

    Chapter  Google Scholar 

  6. Gafni, A., and Brand, L., 1978, Excited state proton transfer reactions of acridine studied by nanosecond fluorometry, Chem Phys. Lett. 58: 346–350.

    Article  CAS  Google Scholar 

  7. Ofran, M., and Feitelson, J., 1978, Time dependence of dissociation in the excited state of ß-naphthol, Chem. Phys. Lett. 19:427–431.

    Google Scholar 

  8. Tsutsumi, K., and Shizuka, H., 1980, Proton transfer and acidity constant in the excited state of naphthols by dynamic analyses, Z Phys. Chem. N. F. 122: 129–142.

    Article  CAS  Google Scholar 

  9. Harris, C. M., and Seiinger, B. K., 1980, Proton-induced fluorescence quenching of 2-naphthol, J. Phys. Chem. 84: 891–898.

    Article  CAS  Google Scholar 

  10. Harris, C. M., and Sellinger, B. K., 1980, Acid-base properties of 1-naphthol. Proton-induced fluorescence quenching, J. Phys. Chem. 84: 1366–1371.

    Article  CAS  Google Scholar 

  11. Webb, S. P., Yeh, S.W., Philips, L. A., Tolbert, M. A., and Clark, J. H., 1984, Ultrafast excited-state proton transfer in 1-naphthol, J. Am. Chem Soc. 106: 7286–7288.

    Article  CAS  Google Scholar 

  12. Boyer, R., Deckey, G., Marzzacco, C., Mulvaney, M., Schwab, C., and Halpern, A. M., 1985, The photophysical properties of 2- naphthol, J. Chem. Educ. 62: 630–632.

    Article  CAS  Google Scholar 

  13. Bardez, E., Monnier, E., and Valeur, B., 1985, Dynamics of excited-state reactions in reversed micelles. 2. Proton transfer involving various fluorescent probes according to their sites of solubilization, J. Phys. Chem. 89: 5031–5036.

    Article  CAS  Google Scholar 

  14. Loken, M. R., Hayes, J. W., Gohlke, J. R., and Brand, L., 1972, Excited-state proton transfer as a biological probe. Determination of rate constants by means of nanosecond fluorometry, Biochemistry 11: 4779–4786.

    Article  CAS  Google Scholar 

  15. Laws, W. R., and Brand, L., 1979, Analysis of two-state excited-state reactions. The fluorescence decay of 2-naphthol, J. Phys. Chem. 83: 795–802.

    Article  CAS  Google Scholar 

  16. Htun, M. T., Suwaiyan, A., and Klein, U. K. A., 1995, Time-resolved spectroscopy of 4-hydroxy-l-naphthalenesulphonate in alcohol-water mixtures, Chem. Phys. Lett. 243: 506–511.

    Article  Google Scholar 

  17. Laws, W. R., Posner, G. H., and Brand, L., 1979, A covalent fluorescence probe based on excited state proton transfer, Arch. Biochem. Biophys. 193: 88–100.

    Article  CAS  Google Scholar 

  18. Marciniak, B., Kozubek, H., and Paszyc, S., 1992, Estimation of pKa in the first excited single state, J. Chem. Educ. 69: 247–249.

    Article  CAS  Google Scholar 

  19. Davenport, L., Knutson, J. R., and Brand, L., 1986, Excited-state proton transfer of equilenin and dihydroequilenin: Interaction with bilayer vesicles, Biochemistry 25: 1186–1195.

    Article  CAS  Google Scholar 

  20. Lin, H., and Gryczynski, I., unpublished observations.

    Google Scholar 

  21. Förster, Th., 1950, Die pH-abhangigkeit der fluoreszenz von naphthalinderivaten, Z Electrocherru 54: 531–553.

    Google Scholar 

  22. Grabowski, Z. R., and Grabowska, A., 1976, The Förster cycle reconsidered, Z Phys. Chem. N. F. 104: 197–208.

    Article  Google Scholar 

  23. Grabowski, Z. R., 1981, Generalized Förster cycle applied to coordination compounds, J. Lumin. 24/25: 559–562.

    Google Scholar 

  24. Grabowski, Z. R., and Rubaszewska, W., 1977, Generalised Förster cycle, J. Chem. Soc., Faraday Trans. 173:11–28.

    Google Scholar 

  25. Birks, J. B., 1970, Photophysics of Aromatic Molecules, Wiley- Interscience, New York.

    Google Scholar 

  26. Brand, L., and Laws, W. R., 1983, Excited-state proton transfer, in Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology, R. D. Cundall and F. E. Dale (eds.), Plenum Press, New York, pp. 319–340.

    Google Scholar 

  27. Lakowicz, J. R., and Baiter, A., 1982, Differential wavelength de-convolution of time-resolved fluorescence intensities: A new method for the analysis of excited state processes, Biophys. Chem. 16: 223–240.

    Article  CAS  Google Scholar 

  28. Rumbles, G., Smith, T. A., Brown, A. J., Carey, M., and Soutar, I., 1997, Autoreconvolution—an extension to the “reference convolution” procedure for the simultaneous analysis of two fluorescence decays from one sample, J. Fluoresc. 7 (3): 217–229.

    Article  CAS  Google Scholar 

  29. Lakowicz, J. R., and Baiter, A., 1982, Theory of phase-modulation fluorescence spectroscopy for excited state processes, Biophys. Chem. 16: 99–115.

    Article  CAS  Google Scholar 

  30. Lakowicz, J. R., and Baiter, A., 1982, Analysis of excited state processes by phase-modulation fluorescence spectroscopy, Biophys. Chem. 16: 117–132.

    Article  CAS  Google Scholar 

  31. Lakowicz, J. R., and Baiter, A., 1982, Detection of the reversibility of an excited state reaction by phase modulation fluorometry, Chem. Phys. Lett. 92: 117–121.

    Article  CAS  Google Scholar 

  32. Spencer, R. D., and Weber, G., 1969, Measurement of subnanosec-ond fluorescence lifetimes with a cross-correlation phase fluorome-ter, Ann. N.Y. Acad. Sci. 158: 361–376.

    Article  CAS  Google Scholar 

  33. Veselova, T. V., Limareva, L. A., Cherkasov, A. S., and Shirokov, V. I., 1965, Fluorometric study of the effect of solvent on the fluorescence spectrum of 3-amino-N-methylphthalimide, Opt. Spectwsc. 19: 39–43.

    Google Scholar 

  34. Bakhshiev, N. G., Mazurenko, Yu. T., and Piterskaya, I. V., 1966, Luminescence decay in different portions of the luminescence spectrum of molecules in viscous solutions, Opt. Spectrosc. 21: 307–309.

    Google Scholar 

  35. Gryczynski, I., unpublished observations.

    Google Scholar 

  36. Lofroth, J-E., 1985, Recent developments in the analysis of fluorescence intensity and anisotropy data, in Analytical Instrumentation, A. J. W. G. Visser (ed.), Marcel Dekker, New York, pp. 403–431.

    Google Scholar 

  37. Itoh, M., Tokumura, K., Tanimoto, Y., Okada, Y., Takeuchi, H., Obi, K., and Tanaka, I., 1982, Time-resolved and steady-state fluorescence studies of the excited state proton transfer in 3-hydroxyflavone and 3-hydroxychromone, J. Am. Chem. Soc. 104: 4146–4150.

    Article  CAS  Google Scholar 

  38. McMorrow, D., and Kasha, M., 1984, Intramolecular excited-state proton transfer in 3-hydroxyflavone. Hydrogen-bonding solvent perturbations, J. Phys. Chem. 88: 2235–2243.

    Article  CAS  Google Scholar 

  39. Bulska, H., 1983, Intramolecular cooperative double proton transfer in [2,2/bipyridyl]-3,3-diol, Chem. Phys. Lett. 98: 398–402.

    Article  CAS  Google Scholar 

  40. Borowicz, P., Grabowska, A., Wortmann, R., and Liptay, W., 1992, Tautomerization in fluorescent states of bipyridyl-diols: A direct confirmation of the intramolecular double proton transfer by electro-optical emission measurements, J. Lumin. 52: 265–273.

    Article  CAS  Google Scholar 

  41. Klopffer, W., 1977, Intramolecular proton transfer in electronically excited molecules, in Advances in Photochemistry, J. N. Pitts, G. S. Hammond, and K. Gollnick (eds.), John Wiley and Sons, New York, pp. 311–358.

    Chapter  Google Scholar 

  42. Waluk, J., Bulska, H., Pakula, B., and Sepiol, J., 1981, Red edge excitation study of cooperative double proton transfer in 7-azain-dole, J; Lumin. 24/25:519–522.

    Google Scholar 

  43. Kim, Y. T., Yardley, J. T., and Hochstrasser, R. M., 1989, Solvent effects on intramolecular proton transfer, Chem. Phys. 136: 311–319.

    Article  CAS  Google Scholar 

  44. Sytnik, A., Gormin, D., and Kasha, M., 1994, Interplay between excited state intramolecular proton transfer and charge transfer in flavonols and their use as protein-binding site fluorescence probes, Proc. Natl. Acad. Sci. U.S.A. 91: 11968–11972.

    Article  CAS  Google Scholar 

  45. Sekikawa, T., Kobayashi, T., and Inabe, T., 1997, Femtosecond fluorescence study of proton-transfer process in thermochromic crystalline salicylideneanilines, J. Phys. Chem. B 101: 10645–10652.

    Article  CAS  Google Scholar 

  46. Chapman, C. F., and Maroncelli, M., 1992, Excited state tautomerization of 7-azaindole in water, J. Phys. Chem. 96: 8430–8441.

    Article  CAS  Google Scholar 

  47. Szabo, A. G., Krajcarski, D. T., Cavatorta, P., Masotti, L., and Barcellona, M. L., 1986, Excited state pKa behaviour of DAPI. A rationalization of the fluorescence enhancement of DAPI in DAPI- nucleic acid complexes, Photochem. Photobiol. 44: 143–150.

    Article  CAS  Google Scholar 

  48. Gutman, M., Huppert, D., and Nachliel, E., 1982, Kinetic studies of proton transfer in the microenvironment of a binding site, Eur. J. Biochem. 121: 637–642.

    Article  CAS  Google Scholar 

  49. Gutman, M., Nachliel, E., and Huppert, D., 1982, Direct measurement of proton transfer as a probing reaction for the microenvironment of the apomyoglobin heme-binding site, Eur. J. Biochem. 125: 175–181.

    Article  CAS  Google Scholar 

  50. Hresko, R. C., Sugar, I. P., Barenholz, Y., and Thompson, T. E., 1986, Lateral distribution of a pyrene-labeled phosphatidylcholine in phosphatidylcholine bilayers: Fluorescence phase and modulation study, Biochemistry 25: 3813–3823.

    Article  CAS  Google Scholar 

  51. Bauer, R. K., Kowalczyk, A., and Baiter, A., 1977, Phase fluorometer study of the excited state reactions of 4-methylumbelliferone, Z Naturforsch. A 32: 560–564.

    Google Scholar 

  52. Nemkovich, N. A., Matseiko, V. I., Rubinov, A. N., and Tomin, V. I., 1979, Kinetics of the spontaneous luminescence of p-methylumbel-liferone solutions in the nanosecond region, Opt. Spectrosc. 47: 490–493.

    Google Scholar 

  53. Baiter, A., and Rolinski, O., 1984, Excited state reactions of 4- methylumbelliferone studied by nanosecond fluorometry, Z Naturforsch. A 39:1035–1040.

    Google Scholar 

  54. de Melo, J. S., and Macanita, A. L., 1993, Three interconverting excited species: Experimental study and solution of the general photokinetic triangle by time-resolved fluorescence, Chem Phys. Lett. 204: 556–562.

    Article  Google Scholar 

  55. Beechem, J. M., Ameloot, M., and Brand, L., 1985, Global analysis of fluorescence decay surfaces: Excited-state reactions, Chem Phys. Lett. 120: 466–472.

    Article  CAS  Google Scholar 

  56. Ameloot, M., Boens, N., Andriessen, R., Van den Bergh, V., and De Schryver, F. C., 1991, Non a priori analysis of fluorescence decay surfaces of excited state processes. 1. Theory, J. Phys. Chem 95: 2041–2047.

    Article  CAS  Google Scholar 

  57. Andriessen, R., Boens, N., Ameloot, M., and De Schryver, F. C., 1991, Non a priori analysis of fluorescence decay surfaces of ex-cited-state processes. 2. Intermolecular excimer formation of py-rene, J. Phys. Chem. 95: 2047–2058.

    Article  CAS  Google Scholar 

  58. Boens, N., Andriessen, R., Ameloot, M., Van Dommelen, L., and De Schryver, F. C., 1992, Kinetics and identifiability of intramolecular two-state excited state processes. Global compartmental analysis of the fluorescence decay surface, J. Phys. Chem. 96: 6331–6342.

    Article  CAS  Google Scholar 

  59. Van Dommelen, L., Boens, N., Ameloot, M., De Schryver, F. C., and Kowalczyk, A., 1993, Species-associated spectra and upper and lower bounds on the rate constants of reversible intramolecular two-state excited state processes with added quencher. Global compartmental analysis of the fluorescence decay surface, J. Phys. Chem 97: 11738–11753.

    Article  Google Scholar 

  60. Van Dommelen, L., Boens, N., De Schryver, F. C., and Ameloot, M., 1995, Distinction between different competing kinetic models of irreversible intramolecular two-state excited-state processes with added quencher. Global compartmental analysis of the fluorescence decay surface, J. Phys. Chem. 99: 8959–8971.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1999). Excited-State Reactions. In: Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3061-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3061-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3063-0

  • Online ISBN: 978-1-4757-3061-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics