Skip to main content

Abstract

In the previous chapter we presented an overview of protein fluorescence. We described the spectral properties of the aromatic amino acids and how these properties depend on protein structure. We now extend this discussion to include time-resolved measurements of intrinsic protein fluorescence. Prior to 1983, most measurements of time-resolved fluorescence were performed using TCSPC. The instruments employed for these measurements typically used a flashlamp excitation source and a standard dynodechain-type PMT. Such instruments provided instrument response functions with a half-width near 2 ns, which is comparable to the decay time of most proteins. The limited repetition rate of the flashlamps, near 20 kHz, resulted in data of modest statistical accuracy, unless the acquisition times were excessively long. Given the complexity of protein intensity and anisotropy decays, and the inherent difficulty of resolving multiexponential processes, it was difficult to obtain definitive information on the decay kinetics of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birch, D. J. S., and Imhof, R. E., 1991, Tune-domain fluorescence spectroscopy using time-correlated single-photon counting, in Topics in Fluorescence Spectroscopy, Volume 1, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 1 – 95.

    Google Scholar 

  2. Small, E. W., 1991, Laser sources and microchannel plate detectors for pulse fluorometry, in Topics in Fluorescence Spectroscopy, Vol-urne 1, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 97 – 182.

    Google Scholar 

  3. Gratton, E., and Limkeman, M., 1983, A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution, Biophys. J. 44: 315 – 324.

    Article  CAS  Google Scholar 

  4. Lakowicz, J. R., and Maliwal, B. P., 1985, Construction and performance of a variable-frequency phase-modulation fluorometer, Biophys. Chem. 21: 61 – 78.

    Article  CAS  Google Scholar 

  5. Lakowicz, J. R., and Gryczynski, I., 1991, Frequency-domain fluorescence spectroscopy, in Topics in Fluorescence Spectroscopy, Volume 1, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 293 – 355.

    Google Scholar 

  6. Laczko, G., Gryczynski, I., Gryczynski, Z., Wiczk, W., Malak, M., and Lakowicz, J. R., 1990, A 10 GHz frequency-domain fluorometer, Rev. Sci. Instrum. 61: 2331 – 2337.

    Article  CAS  Google Scholar 

  7. Grinvald, A., and Steinberg, I. Z., 1976, The fluorescence decay of tryptophan residues in native and denatured proteins, Biochim. Biophys. Acta 427: 663 – 678.

    Article  CAS  Google Scholar 

  8. Beechem, J. M., and Brand, L., 1985, Time-resolved fluorescence of proteins, Annu. Rev. Biochem. 54: 43 – 71.

    Article  CAS  Google Scholar 

  9. Rayner, D. M., and Szabo, A. G., 1978, Time resolved fluorescence of aqueous tryptophan, Can. J. Chem. 56: 743 – 745.

    Article  CAS  Google Scholar 

  10. Szabo, A. G., and Rayner, D. M., 1980, Fluorescence decay of tryptophan conformers in aqueous solution, J. Am. Chem. Soc. 102: 554 – 563.

    Article  CAS  Google Scholar 

  11. Gudgin, E., Lopez-Delgado, R., and Ware, W. R., 1981, The tryptophan fluorescence lifetime puzzle. A study of decay times in aqueous solution as a function of pH and buffer composition, Can. J. Chem. 59: 1037 – 1044.

    Article  CAS  Google Scholar 

  12. McLaughlin, M. L., and Barkley, M. D., 1997, Time-resolved fluorescence of constrained tryptophan derivatives: Implications for protein fluorescence, Methods Enzymol. 278: 190 – 202.

    Article  CAS  Google Scholar 

  13. Schiller, P. W., 1985, Application of fluorescence techniques in studies of peptide conformations and interactions, Peptides 7: 115164.

    Google Scholar 

  14. Robbins, R. J., Fleming, G. R., Beddard, G. S., Robinson, G. W., Thistlethwaite, P. J., and Woolfe, G. J., 1980, Photophysics of aqueous tryptophan: pH and temperature effects, J. Am. Chem. Soc. 102: 6271 – 6280.

    Article  CAS  Google Scholar 

  15. Eftink, M. R., Jia, Y., Hu, D., and Ghiron, C. A., 1995, Fluorescence studies with tryptophan analogues: Excited state interactions involving the side chain amino group, J. Phys. Chem. 99: 5713 – 5723.

    Article  CAS  Google Scholar 

  16. Petrich, J. W., Chang, M. C., McDonald, D. B., and Fleming, G. R., 1983, On the origin of nonexponential fluorescence decay in tryptophan and its derivatives, J. Am. Chem. Soc. 105: 3824 – 3832.

    Article  CAS  Google Scholar 

  17. Fleming, G. R., Morris, J. M., Robbins, R. J., Woolfe, G. J., Thistlewaite, P. J., and Robinson, G. W., 1978, Nonexponential fluorescence decay of aqueous tryptophan and two related peptides by picosecond spectroscopy, Proc. Natl. Acad. Sci. U.S.A. 75: 46524656.

    Google Scholar 

  18. Chen, Y., Liu, B., Yu, H.-T., and Barkley, M. D., 1996, The peptide bond quenches indole fluorescence, J. Am. Chem. Soc. 118: 9271 – 9278.

    Article  CAS  Google Scholar 

  19. Chen, Y., Liu, B., and Barkley, M. D., 1995, Trifluoroethanol quenches indole fluorescence by excited-state proton transfer, J. Am. Chem. Soc. 117: 5608 – 5609.

    Article  CAS  Google Scholar 

  20. Steiner, R. F., and Kirby, E. P., 1969, The interaction of the ground and excited states of indole derivatives with electron scavengers, J. Phys. Chem. 15: 4130 – 4135.

    Article  Google Scholar 

  21. Froehlich, P. M., Gantt, D., and Paramasigamani, V., 1977, Fluorescence quenching of indoles by N,N-dimethylformamide, Photochem. Photobiol. 26: 639 – 642.

    Article  CAS  Google Scholar 

  22. Ricci, R. W., and Nesta, J. M., 1976, Inter-and intramolecular quenching of indole fluorescence by carbonyl compounds, J. Phys. Chem. 80: 974 – 980.

    Article  CAS  Google Scholar 

  23. Shopova, M., and Genov, N., 1983, Protonated form of histidine 238 quenches the fluorescence of tryptophan 241 in subtilisin novo, Int. J. Peptide Protein Res. 21: 475 – 478.

    Article  CAS  Google Scholar 

  24. Shinitzky, M., and Rivnay, B., 1977, Degree of exposure of membrane proteins determined by fluorescence quenching, Biochemistry 16: 982 – 986.

    Article  CAS  Google Scholar 

  25. Prutz, W. A., Siebert, F., Butler, J., Land, E. J., Menez, A., and Montenay-Garestier, T., 1982, Intramolecular radical transformations involving methionine, tryptophan and tyrosine, Biochim. Biophys. Acta 705: 139 – 149.

    Article  Google Scholar 

  26. Sanyal, G., Kim, E., Thompson, F. M., and Brady, E. K., 1989, Static quenching of tryptophan fluorescence by oxidized dithiothreitol, Biochem. Biophys. Res. Commun. 165: 772 – 781.

    Article  CAS  Google Scholar 

  27. Butler, J., Land, E. J., Prutz, W. A., and Swallow, A. J., 1982, Charge transfer between tryptophan and tyrosine in proteins, Biochim. Biophys. Acta 705: 150 – 162.

    Article  CAS  Google Scholar 

  28. Eftink, M. R., 1991, Fluorescence quenching reactions, in Biophysical and Biochemical Aspects of Fluorescence Spectroscopy, T. G. Dewey (ed.), Plenum Press, New York, pp. 1 – 41.

    Google Scholar 

  29. Jameson, D. M., and Weber, G., 1981, Resolution of the pH-dependent heterogeneous fluorescence decay of tryptophan by phase and modulation measurements, J. Phys. Chem. 85: 953 – 958.

    Article  CAS  Google Scholar 

  30. Chen, R. E, Knutson, J. R., Ziffer, H., and Porter, D., 1991, Fluorescence of tryptophan dipeptides: Correlations with the rotamer model, Biochemistry 30: 5184 – 5195.

    Article  CAS  Google Scholar 

  31. Shizuka, H., Serizawa, M., Shimo, T., Saito, I., and Matsuura, T., 1988, Fluorescence-quenching mechanism of tryptophan. Remarkably efficient internal proton-induced quenching and charge-transfer quenching, J. Am. Chem. Soc. 110: 1930 – 1934.

    Article  CAS  Google Scholar 

  32. Malak, H., Gryczynski, I., and Lakowicz, J. R., unpublished observations.

    Google Scholar 

  33. Ruggiero, A. J., Todd, D. C., and Fleming, G. R., 1990, Subpicosecond fluorescence anisotropy studies of tryptophan in water, J. Am. Chem. Soc. 112: 1003 – 1014.

    Article  CAS  Google Scholar 

  34. Lakowicz, J. R., Laczko, G., and Gryczynski, I., 1987, Picosecond resolution of tyrosine fluorescence and anisotropy decays by 2-GHz frequency-domain fluorometry, Biochemistry 26: 82 – 90.

    Article  CAS  Google Scholar 

  35. Döring, K., Konermann, L., Surrey, T., and Jährig, F., 1995, A long lifetime component in the tryptophan fluorescence of some proteins, Eue. Biophys. J. 23: 423 – 432.

    Google Scholar 

  36. Ross, J. B. A., Laws, W. R., Rousslang, K. W., and Wyssbrod, H. R., 1992, Tyrosine fluorescence and phosphorescence from proteins and polypeptides, in Topics in Fluorescence Spectroscopy, Volume 3, Biochemical Applications, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 1 – 63.

    Google Scholar 

  37. Laws, W. R., Ross, J. B. A., Wyssbrod, H. R., Beechem, J. M., Brand, L., and Sutherland, J. C., 1986, Time-resolved fluorescence and 1H NMR studies of tyrosine and tyrosine analogues: Correlation of NMR-determined rotamer populations and fluorescence kinetics, Biochemistry 25: 599 – 607.

    Article  CAS  Google Scholar 

  38. Ross, J. B. A., Laws, W. R., Sutherland, J. C., Buku, A., Katsoyannis, P. G., Schwartz, I. L., and Wyssbrod, H. R., 1986, Linked-function analysis of fluorescence decay functions: Resolution of side-chain rotamer populations of a single aromatic amino acid in small polypeptides, Photochem. Photobiol. 44: 365 – 370.

    Article  CAS  Google Scholar 

  39. Contino, P. B., and Laws, W. R., 1991, Rotamer-specific fluorescence quenching in tyrosinamide: Dynamic and static interactions, J. Fluoresc. 1 (1): 5 – 13.

    Article  CAS  Google Scholar 

  40. Leroy, E., Lami, H., and Laustriat, G., 1971, Fluorescence lifetime and quantum yield of phenylalanine aqueous solutions. Temperature and concentration effects, Photochem. Photobiol. 13: 411 – 421.

    Article  CAS  Google Scholar 

  41. Sudhakar, K., Wright, W. W., Williams, S. A., Phillips, C. M., and Vanderkooi, J. M., 1993, Phenylalanine fluorescence and phosphorescence used as a probe of conformation for cod parvalbumin, J. Fluoresc. 3 (2): 57 – 64.

    Article  CAS  Google Scholar 

  42. Eftink, M. R., Ghiron, C. A., Kautz, R. A., and Fox, R. O., 1989, Fluorescence lifetime studies with staphylococcal nuclease and its site-directed mutant: Test of the hypothesis that praline isomerism is the basis for nonexponential decays, Biophys. J. 55: 575 – 579.

    Article  CAS  Google Scholar 

  43. Dahms, T. E. S., Willis, K. J., and Szabo, A. G., 1995, Conformational heterogeneity of tryptophan in a protein crystal, J. Am. Chem. Soc. 117: 2321 – 2326.

    Article  CAS  Google Scholar 

  44. Tanaka, F., and Mataga, N., 1987, Fluorescence quenching dynamics of tryptophan in proteins, Biophys. J. 51: 487 – 495.

    Article  CAS  Google Scholar 

  45. Alcala, J. R., 1994, The effect of harmonic conformational trajectories on protein fluorescence and lifetime distributions, J. Chem. Phys. 101: 4578 – 4584.

    Article  CAS  Google Scholar 

  46. Eftink, M. R., and Ghiron, C. A., 1975, Dynamics of a protein matrix as revealed by fluorescence quenching, Proc. Natl. Acad. Sci. U.S.A. 72: 3290 – 3294.

    Article  CAS  Google Scholar 

  47. Eftink, M. R., and Ghiron, C. A., 1977, Exposure of tryptophanyl residues and protein dynamics, Biochemistry 16: 5546 – 5551.

    Article  CAS  Google Scholar 

  48. Eftink, M. R., and Hagaman, K. A., 1986, The viscosity dependence of the acrylamide quenching of the buried tryptophan residue in parvalbumin and ribonuclease T1, Biophys. Chem. 25: 277 – 282.

    Article  CAS  Google Scholar 

  49. Longworth, J. W., 1968, Excited state interactions in macromolecules, Photochem. Photobiol. 7: 587 – 594.

    Article  CAS  Google Scholar 

  50. James, D. R., Demmer, D. R., Steer, R. P., and Verrall, R. E., 1985, Fluorescence lifetime quenching and anisotropy studies of ribonuclease Ti, Biochemistry 24: 5517 – 5526.

    Article  CAS  Google Scholar 

  51. Gryczynski, I., Eftink, M., and Lakowicz, J. R., 1988, Conformation heterogeneity in proteins as an origin of heterogeneous fluorescence decays, illustrated by native and denatured ribonuclease T1, Biochim. Biophys. Acta 954: 244 – 252.

    Article  CAS  Google Scholar 

  52. Eftink, M. R., and Ghiron, C. A., 1987, Frequency domain measurements of the fluorescence lifetime of ribonuclease T1, Biophys. J. 52: 467 – 473.

    Article  CAS  Google Scholar 

  53. Chen, L. X.-Q., Longworth, J. W., and Fleming, G. R., 198778. Georghiou, S., Thompson, M., and Mukhopadhyay, A. K., 1981, Melittin—phospholipid interaction. Evidence for melittin aggregation, Biochim. Biophys. Acta 642: 429 – 432.

    Google Scholar 

  54. Gryczynski, I., and Lakowicz, J. R., unpublished observations.

    Google Scholar 

  55. Heinemann, U., and Saenger, W., 1982, Specific protein—nucleic acid recognition in ribonuclease T1-2’-guanylic acid complex: An X-ray study, Nature 299: 27 – 31.

    Article  CAS  Google Scholar 

  56. MacKerell, A. D., Nilsson, L., Rigler, R., Heinemann, U., and Saenger, W., 1989, Molecular dynamics simulations of ribonuclease T1: Comparison of the free enzyme and the 2’ GMP—enzyme complex, Proteins: Structure, Function and Genetics 6: 20 – 31.

    Article  CAS  Google Scholar 

  57. MacKerell, A. D., Rigler, R., Nilsson, L., Hahn, U., and Saenger, W., 1987, A time-resolved fluorescence, energetic and molecular dynamics study of ribonuclease T1, Biophys. Chem. 26: 247 – 261.

    Article  CAS  Google Scholar 

  58. Johnson, J. L., and Raushel, F. M., 1996, Influence of primary sequence transpositions on the folding pathways of ribonuclease T1, Biochemistry 35: 10223 – 10233.

    Article  CAS  Google Scholar 

  59. Data courtesy of Dr. John Lee, University of Georgia.

    Google Scholar 

  60. Liao, R., Wang, C.-K., and Cheung, H. C., 1992, Time-resolved tryptophan emission study of cardiac troponin I, Biophys. J. 63: 986995.

    Google Scholar 

  61. Dines, K., Gakamsky, D. M., Haran, G., Haas, E., Ojcius, D. M., Kourilsky, P., and Pecht, I., 1994, Picosecond fluorescence spectroscopy of a single-chain class I major histocompatibility complex encoded protein in its peptide loaded and unloaded states, Immunol. Lett. 40: 125 – 132.

    Article  Google Scholar 

  62. Kouyama, I., Kinosita, K., and Bcegami, A., 1989, Correlation between internal motion and emission kinetics of tryptophan residues in proteins, Eur. J. Biochem. 182: 517 – 521.

    Article  CAS  Google Scholar 

  63. Chen, L. X.-Q., Petrich, J. W., Fleming, G. R., and Perico, A., 1987, Picosecond fluorescence studies of polypeptide dynamics: Fluorescence anisotropies and lifetimes, Chem. Phys. Lett. 139: 55 – 61.

    Article  CAS  Google Scholar 

  64. Rischel, C., Thyberg, P., Rigler, R., and Poulsen, F. M., 1996, Time-resolved fluorescence studies of the molten globule state of apomyoglobin, J. Mol. Biol. 257: 877 – 885.

    Article  CAS  Google Scholar 

  65. Gakamsky, D. M., Haas, E., Robbins, P., Strominger, J. L., and Pecht, I., 1995, Selective steady-state and time-resolved fluorescence spectroscopy of an HLA-A2—peptide complex, Immunol. Lett. 44: 195 – 201.

    Article  CAS  Google Scholar 

  66. Hansen, J. E., Rosenthal, S. J., and Fleming, G. R., 1992, Subpicosecond fluorescence depolarization studies of tryptophan and tryptophanyl residues of proteins, J. Phys. Chem. 96: 3034 – 3040.

    Article  CAS  Google Scholar 

  67. Ross, J. B. A., Rousslang, K. W., and Brand, L., 1981, Time-resolved fluorescence and anisotropy decay of the tryptophan in adrenocorticotropin-(1–24), Biochemistry 20: 4361 – 4369.

    Article  CAS  Google Scholar 

  68. Nordlund, T. M., and Podolski, D. A., 1983, Streak camera measurement of tryptophan and rhodamine motions with picosecond time resolution, Photochem. Photobiol. 38: 665 – 669.

    Article  CAS  Google Scholar 

  69. Nordlund, T. M., Liu, X.-Y, and Sommer, J. H., 1986, Fluorescence polarization decay of tyrosine in lima bean trypsin inhibitor, Proc. Natl. Acad. Sci. U.S.A. 83: 8977 – 8981.

    Article  CAS  Google Scholar 

  70. Gryczynski, I., and Lakowicz, J. R., unpublished observations.

    Google Scholar 

  71. Brochon, J-C., Wahl, P., and Auchet, J-C., 1974, Fluorescence time-resolved spectroscopy and fluorescence anisotropy decay of the Staphylococcus aureus endonuclease, Eur. J. Biochem. 41: 577 – 583.

    Article  CAS  Google Scholar 

  72. Eftink, M. R., Gryczynski, I., Wiczk, W., Laczko, G., and Lakowicz, J. R., 1991, Effects of temperature on the fluorescence intensity and anisotropy decays of staphylococcal nuclease and the less stable nuclease-ConA-SG28 mutant, Biochemistry 30: 8945 – 8953.

    Article  CAS  Google Scholar 

  73. Lakowicz, J. R., Gryczynski, I., Szmacinski, H., Cherek, H., and Joshi, N., 1991, Anisotropy decays of single tryptophan proteins measured by GHz frequency-domain fluorometry with collisional quenching, Eur. Biophys. J. 19: 125 – 140.

    Article  CAS  Google Scholar 

  74. Lakowicz, J. R., Cherek, H., Gryczynski, I., Joshi, N., and Johnson, M. L., 1987, Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples, Biophys. J. 51: 755 – 768.

    Article  CAS  Google Scholar 

  75. John, E., and Jährig, F., 1988, Dynamics of melittin in water and membranes as determined by fluorescence anisotropy decay, Biophys. J. 54: 817 – 827.

    Article  CAS  Google Scholar 

  76. Tran, C. D., and Beddard, G. S., 1985, Studies of the fluorescence from tryptophan in melittin, Eur. Biophys. J. 13: 59 – 64.

    Article  CAS  Google Scholar 

  77. Lakowicz, J. R., Gryczynski, I., Cherek, H., and Laczko, G., 1991, Anisotropy decays of indole, melittin monomer and melittin tetra-mer by frequency-domain fluorometry and multi-wavelength global analysis, Biophys. Chem. 39: 241 – 251.

    Article  CAS  Google Scholar 

  78. Georghiou, S., Thompson, M., and Mukhopadhyay, A. K., 1981, Melittin—phospholipid interaction. Evidence for melittin aggregation, Biochim. Biophys. Acta 642: 429 – 432.

    Article  CAS  Google Scholar 

  79. Dufourcq, J., and Faucon, J.-F., 1977, Intrinsic fluorescence study of lipid—protein interactions in membrane models, Biochim. Biophys. Acta 467: 1 – 11.

    CAS  Google Scholar 

  80. Faucon, J. F., Dufourcq, J., and Lussan, C., 1979, The self-association of melittin and its binding to lipids, FEBS Lett. 102: 187 – 190.

    Article  CAS  Google Scholar 

  81. Kaszycki, P., and Wasylewski, Z., 1990, Fluorescence-quenchingresolved spectra of melittin in lipid bilayers, Biochim. Biophys. Acta 1040: 337 – 345.

    Article  CAS  Google Scholar 

  82. Papenhuijzen, J., and Visser, A. J. W. G., 1983, Simulation of convoluted and exact emission anisotropy decay profiles, Biophys. Chem. 17: 57 – 65.

    Article  CAS  Google Scholar 

  83. Lakowicz, J. R., and Cherek, H., 1981, Proof of nanosecond timescale relaxation in apomyoglobin by phase fluorometry, Biochem. Biophys. Res. Commun. 99: 1173 – 1178.

    Article  CAS  Google Scholar 

  84. Pierce, D. W., and Boxer, S. G., 1992, Dielectric relaxation in a protein matrix, J. Phys. Chem. 96: 5560 – 5566.

    Article  CAS  Google Scholar 

  85. Lakowicz, J. R., and Cherek, H., 1980, Nanosecond dipolar relaxation in proteins observed by wavelength-resolved lifetimes of tryptophan fluorescence, J. Biol. Chem. 255: 831 – 834.

    CAS  Google Scholar 

  86. Demchenko, A. P., Gryczynski, I., Gryczynski, Z., Wiczk, W., Malak, H., and Fishman, M., 1993, Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease, Biophys. Chem. 48: 39 – 48.

    Article  CAS  Google Scholar 

  87. Grinvald, A., and Steinberg, I. Z., 1974, Fast relaxation process in a protein revealed by the decay kinetics of tryptophan fluorescence, Biochemistry 25: 5170 – 5178.

    Article  Google Scholar 

  88. Georghiou, S., Thompson, M., and Mukhopadhyay, A. K., 1982, Melittin—phospholipid interaction studied by employing the single tryptophan residue as an intrinsic fluorescent probe, Biochim. Biophys. Acta 688: 441 – 452.

    CAS  Google Scholar 

  89. Kamalov, V. F., Ladokhin, A. S., and Toleutaev, B. N., 1987, Nanosecond intramolecular dynamics of melittin, Translated from Dokl. Akad. Nauk SSSR 296 (3): 180 – 182.

    Google Scholar 

  90. Szmacinski, H., Lakowicz, J. R., and Johnson, M., 1988, Time-resolved emission spectra of tryptophan and proteins from frequency-domain fluorescence spectroscopy, Proc. SPIE 909: 293 – 298.

    Article  CAS  Google Scholar 

  91. Lakowicz, J. R., Szmacinski, H., and Gryczynski, I., 1988, Picosecond resolution of indole anisotropy decays and spectral relaxation by 2 GHz frequency-domain fluorometry, Photochem. Photobiol. 47: 31 – 41.

    Article  CAS  Google Scholar 

  92. Vincent, M., and Gallay, J., 1995, Solvent relaxation around the excited state of indole: Analysis of fluorescence lifetime distributions and time-dependence spectral shifts, J. Phys. Chem. 99: 14931–14941.

    Google Scholar 

  93. Demchenko, A. P., 1992, Fluorescence and dynamics in proteins, in Topics in Fluorescence Spectroscopy, Volume 3, Biochemical Applications, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 65 – 111.

    Google Scholar 

  94. Demchenko, A. P., 1994, Protein fluorescence, dynamics and function: Exploration of analogy between electronically excited and biocatalytic transition states, Biochim. Biophys. Acta 1209: 149–164.

    Google Scholar 

  95. Demchenko, A. P., Apell, H.-J., Sturmer, W., and Fedderson, B., 1993, Fluorescence spectroscopic studies on equilibrium dipole-relaxation dynamics of Na,K-ATPase, Biophys. Chem. 48: 135 – 147.

    Article  CAS  Google Scholar 

  96. Knutson, J. R., Walbridge, D. G., and Brand, L., 1982, Decay-associated fluorescence spectra and the heterogeneous emission of alcohol dehydrogenase, Biochemistry 21: 4671 – 4679.

    Article  CAS  Google Scholar 

  97. Privat, J.-P., Wahl, P., Auchet, J.-C., and Pain, R. H., 1980, Time resolved spectroscopy of tryptophyl fluorescence of yeast 3-phosphoglycerate kinase, Biophys. Chem. 11: 239 – 248.

    Article  CAS  Google Scholar 

  98. Brochon, J. C., Wahl, P., Charlier, M., Maurizot, J. C., and Helene, C., 1977, Time resolved spectroscopy of the tryptophyl fluorescence of the E. coli lac repressor, Biochem. Biophys. Res. Commun. 79: 1261 – 1271.

    Article  CAS  Google Scholar 

  99. Willis, K. J., and Szabo, A. G., 1992, Conformation of parathyroid hormone: Time-resolved fluorescence studies, Biochemistry 31: 8924 – 8931.

    Article  CAS  Google Scholar 

  100. Kim, S.-J., Chowdhury, F. N., Stryjewski, W., Younathan, E. S., Russo, P. S., and Barkley, M. D., 1993, Time-resolved fluorescence of the single tryptophan of Bacillus stearothennophilus phosphofructokinase, Biophys. J. 65: 215 – 226.

    Article  CAS  Google Scholar 

  101. Robbins, D. J., Deibel, M. R., and Barkley, M. D., 1985, Tryptophan fluorescence of terminal deoxynucleotidyl transferase: Effects of quenchers on time-resolved emission spectra, Biochemistry 24: 7250 – 7257.

    Article  CAS  Google Scholar 

  102. Ross, J. A., Schmidt, C. J., and Brand, L., 1981, Tune-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase, Biochemistry 20: 4369 – 4377.

    Article  CAS  Google Scholar 

  103. She, M., Dong, W-J., Umeda, P. K., and Cheung, H. C., 1997, Time-resolved fluorescence study of the single tryptophans of engineered skeletal muscle troponin C, Biophys. J. 73: 1042 – 1055.

    Article  CAS  Google Scholar 

  104. Merrill, A. R., Steer, B. A., Prentice, G. A., Weller, M. J., and Szabo, A. G., 1997, Identification of a chameleon-like pH-sensitive segment within the colicin El channel domain that may serve as the pH-activated trigger for membrane bilayer association, Biochemistry 36: 6874 – 6884.

    Article  CAS  Google Scholar 

  105. Hof, M., Fleming, G. R., and Fidler, V., 1996, Time-resolved fluorescence study of a calcium-induced conformational change in prothrombin fragment 1, Proteins: Structure, Function and Genetics 24: 485 – 494.

    Article  CAS  Google Scholar 

  106. Lakowicz, J. R., and Baiter, A., 1982, Resolution of initially excited and relaxed states of tryptophan fluorescence by differential wavelength deconvolution of time-resolved fluorescence decays, Biophys. Chem. 15: 353 – 360.

    Article  CAS  Google Scholar 

  107. Verkshin, N., Vincent, M., and Gallay, J., 1992, Excited-state lifetime distributions of tryptophan fluorescence in polar solutions. Evidence for solvent exciplex formation, Chem. Phys. Lett. 199: 459 – 464.

    Article  Google Scholar 

  108. Vincent, M., Gallay, J., and Demchenko, A. P., 1997, Dipolar relaxation around indole as evidenced by fluorescence lifetime distributions and time-dependence spectral shifts, J. Fluoresc. 7 (1): 107S – 1105.

    CAS  Google Scholar 

  109. Sopkova, J., Gallay, J., Vincent, M., Pancoska, P., and Lewit-Bentley, A., 1994, The dynamic behavior of annexin V as a function of calcium ion binding: A circular dichroism, UV absorption, and steady state and time-resolved fluorescence study, Biochemistry 33: 4490 – 4499.

    Article  CAS  Google Scholar 

  110. Rouviere, N., Vincent, M., Craescu, C. T., and Gallay, J., 1997, Immunosuppressor binding to the immunophilin FKBP59 affects the local structural dynamics of a surface (3-strand: Time-resolved fluorescence study, Biochemistry 36: 7339 – 7352.

    Article  CAS  Google Scholar 

  111. Suwaliyan, A., and Klein, U. K. A., 1989, Picosecond study of solute—solvent interaction of the excited state of indole, Chem. Phys. Lett. 159: 244 – 250.

    Google Scholar 

  112. Helms, M. K., Petersen, C. E., Bhagavan, N. V., and Jameson, D. M., 1997, Time-resolved fluorescence studies on site-directed mutants of human serum albumin, FEBS Lett. 408: 67 – 70.

    Article  CAS  Google Scholar 

  113. Eftink, M. R., Ramsay, G. D., Burns, L., Maki, A. H., Mann, C. J., Matthews, C. R., and Ghiron, C. A., 1993, Luminescence studies of trp repressor and its single-tryptophan mutants, Biochemistry 32: 9189 – 9198.

    Article  CAS  Google Scholar 

  114. Royer, C. A., 1992, Investigation of the structural determinants of the intrinsic fluorescence emission of the trp repressor using single tryptophan mutants, Biophys. J. 63: 741 – 750.

    Article  CAS  Google Scholar 

  115. Feder, L., Tauc, P., Herve, G., Ladjimi, M. M., and Brochon, J.-C., 1992, The tryptophan residues of aspartate transcarbamylase: Site-directed mutagenesis and time-resolved fluorescence spectroscopy, Biochemistry 31: 12504 – 12513.

    Article  Google Scholar 

  116. Bismuto, E., Irace, G., D’Auria, S., Rossi, M., and Nucci, R., 1997, Multitryptophan-fluorescence emission decay of ß-glycosidase from the extremely thermophilic archaeon Sulfolobus solfataricus, Eur. J. Biochem. 244: 53 – 58.

    Article  CAS  Google Scholar 

  117. Hirsch, R. E., and Nagel, R. L., 1981, Conformational studies of hemoglobins using intrinsic fluorescence measurements, J. Biol. Chem. 256: 1080 – 1083.

    CAS  Google Scholar 

  118. Hirsch, R. E., and Peisach, J., 1986, A comparison of the intrinsic fluorescence of red kangaroo, horse and sperm whale metmyoglobins, Biochim. Biophys. Acta 872: 147 – 153.

    Article  CAS  Google Scholar 

  119. Hirsch, R. E., and Noble, R. W., 1987, Intrinsic fluorescence of carp hemoglobin: A study of the R - T transition, Biochim. Biophys. Acta 914: 213 – 219.

    Article  CAS  Google Scholar 

  120. Sebban, P., Coppey, M., Alpert, B., Lindqvist, L., and Jameson, D. M., 1980, Fluorescence properties of porphyrin-globin from human hemoglobin, Photochem. Photobiol. 32: 727 – 731.

    Article  CAS  Google Scholar 

  121. Hochstrasser, R. M., and Negus, D. K., 1984, Picosecond fluorescence decay of tryptophans in myoglobin, Proc. Natl. Acad. Sci. U.S.A. 81: 4399 – 4403.

    Article  CAS  Google Scholar 

  122. Bismuto, E., Trace, G., and Gratton, E., 1989, Multiple conformational states in myoglobin revealed by frequency domain fluorometry, Biochemistry 28: 1508 – 1512.

    Article  CAS  Google Scholar 

  123. Willis, K. J., Szabo, A. G., Zuker, M., Ridgeway, J. M., and Alpert, B., 1990, Fluorescence decay kinetics of the tryptophyl residues of myoglobin: Effect of heme ligation and evidence for discrete lifetime components, Biochemistry 29: 5270 – 5275.

    Article  CAS  Google Scholar 

  124. Gryczynski, Z., Lubkowski, J., and Bucci, E., 1995, Heme–protein interactions in horse heart myoglobin at neutral pH and exposed to acid investigated by time-resolved fluorescence in the pico-to nanosecond time range, J. BioL Chem. 270: 19232 – 19237.

    Article  CAS  Google Scholar 

  125. Janes, S. M., Holtom, G., Ascenzi, P., Brundri, M., and Hochstrasser, R. M., 1987, Fluorescence and energy transfer of tryptophans in Aplysia myoglobin, Biophys. J. 51: 653 – 660.

    Article  CAS  Google Scholar 

  126. Szabo, A. G., Krajcarski, D., Zuker, M., and Alpert, B., 1984, Conformational heterogeneity in hemoglobin as determined by picosecond fluorescence decay measurements of the tryptophan residues, Chem. Phys. Lett. 108: 145 – 149.

    Article  CAS  Google Scholar 

  127. Bucci, E., Gryczynski, Z., Fronticelli, C., Gryczynski, I., and Lakowicz, J. R., 1992, Fluorescence intensity and anisotropy decays of the intrinsic tryptophan emission of hemoglobin measured with a 10-GHz fluorometer using front-face geometry on a free liquid surface, J. Fluoresc. 2 (1): 29 – 36.

    Article  CAS  Google Scholar 

  128. Steiner, R. F., and Kolinski, R., 1968, The phosphorescence of oligopeptides containing tryptophan and tyrosine, Biochemistry 7: 1014 - 1018.

    Article  CAS  Google Scholar 

  129. Purkey, R. M., and Galley, W. C., 1970, Phosphorescence studies of environmental heterogeneity for tryptophyl residues in proteins, Biochemistry 9: 3569 – 3575.

    Article  CAS  Google Scholar 

  130. Strambini, G. B., and Gonnelli, M., 1985, The indole nucleus triplet-state lifetime and its dependence on solvent microviscosity, Chem. Phys. Lett. 115: 196 – 200.

    Article  CAS  Google Scholar 

  131. Strambini, G. B., and Gonnelli, M., 1990, Tryptophan luminescence from liver alcohol dehydrogenase in its complexes with coenzyme. A comparative study of protein conformation in solution, Biochemistry 29: 196 – 203.

    Article  CAS  Google Scholar 

  132. Strambini, G. B., and Gabellieri, E., 1989, Phosphorescence properties and protein structure surrounding tryptophan residues in yeast, pig, and rabbit glyceraldehyde-3-phosphate dehydrogenase, Biochemistry 28: 160 – 166.

    Article  CAS  Google Scholar 

  133. Cioni, P., Puntoni, A., and Strambini, G. B., 1993, Tryptophan phosphorescence as a monitor of the solution structure of phosphoglycerate kinase from yeast, Biophys. Chem. 46: 47 – 55.

    Article  CAS  Google Scholar 

  134. Burns, L. E., Maki, A. H., Spotts, R., and Matthews, K. S., 1993, Characterization of the two tryptophan residues of the lactose repressor from Escherichia coli by phosphorescence and optical detection of magnetic resonance, Biochemistry 32: 12821 – 12829.

    Article  CAS  Google Scholar 

  135. Gabellieri, E., Rahuel-Clemont, S., Branlant, G., and Strambini, G. B., 1996, Effects of NAD+ binding on the luminescence of tryptophans 84 and 310 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus, Biochemistry 35: 12549 – 12559.

    Article  CAS  Google Scholar 

  136. Strambini, G. B., Cioni, P., and Cook, P. F., 1996, Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway, Biochemistry 35: 8392 – 8400.

    Article  CAS  Google Scholar 

  137. Kai, Y., and Imakubo, K., 1979, Temperature dependence of the phosphorescence lifetimes of heterogeneous tryptophan residues in globular proteins between 293 and 77 K, Photochem. Photobiol. 29: 261 – 265.

    Article  CAS  Google Scholar 

  138. Domanus, J., Strambini, G. B., and Galley, W. C., 1980, Heterogeneity in the thermally-induced quenching of the phosphorescence of multi-tryptophan proteins, Photochem. Photobiol. 31: 15 – 21.

    Article  CAS  Google Scholar 

  139. Barboy, N., and Feitelson, J., 1985, Quenching of tryptophan phosphorescence in alcohol dehydrogenase from horse liver and its temperature dependence, Photochem. Photobiol. 41: 9 – 13.

    Article  CAS  Google Scholar 

  140. Saviotti, M. L., and Galley, W. C., 1974, Room temperature phosphorescence and the dynamic aspects of protein structure, Proc. NatL Acad. Sci. U.S.A. 71: 4154 – 4158.

    Article  CAS  Google Scholar 

  141. Strambini, G. B., 1983, Singular oxygen effects on the room-temperature phosphorescence of alcohol dehydrogenase from horse liver, Biophys. J. 43: 127 – 130.

    Article  CAS  Google Scholar 

  142. Papp, S., and Vanderkooi, J. M., 1989, Tryptophan phosphorescence at room temperature as a tool to study protein structure and dynamics, Photochem. Photobiol. 49: 775 – 784.

    Article  CAS  Google Scholar 

  143. Vanderkooi, J. M., and Berger, J. W., 1989, Excited triplet states used to study biological macromolecules at room temperature, Biochim. Biophys. Acta 976: 1 – 27.

    Article  CAS  Google Scholar 

  144. Subramaniam, V., Gafni, A., and Steel, D. G., 1996, Time-resolved tryptophan phosphorescence spectroscopy: A sensitive probe of protein folding and structure, IEEE J. 2: 1107 – 1114.

    CAS  Google Scholar 

  145. Schauerte, J. A., Steel, D. G., and Gafni, A., 1997, lime-resolved room temperature tryptophan phosphorescence in proteins, Methods Enrymol. 278: 49 – 71.

    Google Scholar 

  146. Vanderkooi, J. M., Calhoun, D. B., and Englander, S. W., 1987, On the prevalence of room-temperature protein phosphorescence, Science 230: 568 – 569.

    Article  Google Scholar 

  147. Strambini, G. B., and Gabellieri, E., 1990, Temperature dependence of tryptophan phosphorescence in proteins, Photochem. Photobiol. 51: 643 – 648.

    CAS  Google Scholar 

  148. Strambini, G. B., and Gonnelli, M., 1995, Tryptophan phosphorescence in fluid solution, J. Am. Chem. Soc. 117: 7646 – 7651.

    Article  CAS  Google Scholar 

  149. Gonnelli, M., Puntoni, A., and Strambini, G. B., 1992, Tryptophan phosphorescence of ribonuclease T1 as a probe of protein flexibility, J. Fluoresc. 2 (3): 157 – 165.

    Article  CAS  Google Scholar 

  150. Cioni, P., Gabellieri, E., Gonnelli, M., and Strambini, G. B., 1994, Heterogeneity of protein conformation in solution from the lifetime of tryptophan phosphorescence, Biophys. Chem. 52: 25 – 34.

    Article  CAS  Google Scholar 

  151. Schlyer, B. D., Schauerte, J. A., Steel, D. G., and Gafni, A., 1994, Time-resolved room temperature protein phosphorescence: Non-exponential decay from single emitting tryptophans, Biophys. J. 67: 1192 – 1202.

    Article  CAS  Google Scholar 

  152. Hansen, J. E., Steel, D. G., and Gafni, A., 1996, Detection of a pH-dependent conformational change in azurin by time-resolved phosphorescence, Biophys. J. 71: 2138 – 2143.

    Article  CAS  Google Scholar 

  153. Subramaniam, V., Bergenhem, N. C. H., Gafni, A., and Steel, D. G., 1995, Phosphorescence reveals a continued slow annealing of the protein core following reactivation of Escherichia coli alkaline phosphatase, Biochemistry 34: 1133 – 1136.

    Article  CAS  Google Scholar 

  154. Gonnelli, M., and Strambini, G. B., 1995, Phosphorescence lifetime of tryptophan in proteins, Biochemistry 34: 13847 – 13857.

    Article  CAS  Google Scholar 

  155. Strambini, G. B., Cioni, P., and Felicioli, R. A., 1987, Characterization of tryptophan environments in glutamate dehydrogenases from temperature-dependent phosphorescence, Biochemistry 26: 4968 – 4975.

    Article  CAS  Google Scholar 

  156. Tanaka, F., Tamai, N., Mataga, N., Tonomura, B., and Hiromi, K., 1994, Analysis of internal motion of single tryptophan in Streptomyces subtilisin inhibitor from its picosecond time-resolved fluorescence, Biophys. J. 67: 874 – 880.

    Article  CAS  Google Scholar 

  157. Tanaka, E, and Mataga, N., 1992, Non-exponential decay of fluorescence of tryptophan and its motion in proteins, in Dynamics and Mechanisms of Photoinduced Electron Transfer and Related Phenomena, N. Mataga, T Okada, and H. Masuhara (eds.), North-Holland, Amsterdam, pp. 501 – 512.

    Google Scholar 

  158. Eisenberg, D., and Crothers, D., 1979, Physical Chemistry with Applications to the Life Sciences,seep. 240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1999). Time-Resolved Protein Fluorescence. In: Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3061-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3061-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3063-0

  • Online ISBN: 978-1-4757-3061-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics