Time-Resolved Protein Fluorescence

  • Joseph R. Lakowicz


In the previous chapter we presented an overview of protein fluorescence. We described the spectral properties of the aromatic amino acids and how these properties depend on protein structure. We now extend this discussion to include time-resolved measurements of intrinsic protein fluorescence. Prior to 1983, most measurements of time-resolved fluorescence were performed using TCSPC. The instruments employed for these measurements typically used a flashlamp excitation source and a standard dynodechain-type PMT. Such instruments provided instrument response functions with a half-width near 2 ns, which is comparable to the decay time of most proteins. The limited repetition rate of the flashlamps, near 20 kHz, resulted in data of modest statistical accuracy, unless the acquisition times were excessively long. Given the complexity of protein intensity and anisotropy decays, and the inherent difficulty of resolving multiexponential processes, it was difficult to obtain definitive information on the decay kinetics of proteins.


Decay Time Tryptophan Residue Lifetime Distribution Intensity Decay Phosphorescence Spectrum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birch, D. J. S., and Imhof, R. E., 1991, Tune-domain fluorescence spectroscopy using time-correlated single-photon counting, in Topics in Fluorescence Spectroscopy, Volume 1, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 1 – 95.Google Scholar
  2. 2.
    Small, E. W., 1991, Laser sources and microchannel plate detectors for pulse fluorometry, in Topics in Fluorescence Spectroscopy, Vol-urne 1, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 97 – 182.Google Scholar
  3. 3.
    Gratton, E., and Limkeman, M., 1983, A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution, Biophys. J. 44: 315 – 324.CrossRefGoogle Scholar
  4. 4.
    Lakowicz, J. R., and Maliwal, B. P., 1985, Construction and performance of a variable-frequency phase-modulation fluorometer, Biophys. Chem. 21: 61 – 78.CrossRefGoogle Scholar
  5. 5.
    Lakowicz, J. R., and Gryczynski, I., 1991, Frequency-domain fluorescence spectroscopy, in Topics in Fluorescence Spectroscopy, Volume 1, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 293 – 355.Google Scholar
  6. 6.
    Laczko, G., Gryczynski, I., Gryczynski, Z., Wiczk, W., Malak, M., and Lakowicz, J. R., 1990, A 10 GHz frequency-domain fluorometer, Rev. Sci. Instrum. 61: 2331 – 2337.CrossRefGoogle Scholar
  7. 7.
    Grinvald, A., and Steinberg, I. Z., 1976, The fluorescence decay of tryptophan residues in native and denatured proteins, Biochim. Biophys. Acta 427: 663 – 678.CrossRefGoogle Scholar
  8. 8.
    Beechem, J. M., and Brand, L., 1985, Time-resolved fluorescence of proteins, Annu. Rev. Biochem. 54: 43 – 71.CrossRefGoogle Scholar
  9. 9.
    Rayner, D. M., and Szabo, A. G., 1978, Time resolved fluorescence of aqueous tryptophan, Can. J. Chem. 56: 743 – 745.CrossRefGoogle Scholar
  10. 10.
    Szabo, A. G., and Rayner, D. M., 1980, Fluorescence decay of tryptophan conformers in aqueous solution, J. Am. Chem. Soc. 102: 554 – 563.CrossRefGoogle Scholar
  11. 11.
    Gudgin, E., Lopez-Delgado, R., and Ware, W. R., 1981, The tryptophan fluorescence lifetime puzzle. A study of decay times in aqueous solution as a function of pH and buffer composition, Can. J. Chem. 59: 1037 – 1044.CrossRefGoogle Scholar
  12. 12.
    McLaughlin, M. L., and Barkley, M. D., 1997, Time-resolved fluorescence of constrained tryptophan derivatives: Implications for protein fluorescence, Methods Enzymol. 278: 190 – 202.CrossRefGoogle Scholar
  13. 13.
    Schiller, P. W., 1985, Application of fluorescence techniques in studies of peptide conformations and interactions, Peptides 7: 115164.Google Scholar
  14. 14.
    Robbins, R. J., Fleming, G. R., Beddard, G. S., Robinson, G. W., Thistlethwaite, P. J., and Woolfe, G. J., 1980, Photophysics of aqueous tryptophan: pH and temperature effects, J. Am. Chem. Soc. 102: 6271 – 6280.CrossRefGoogle Scholar
  15. 15.
    Eftink, M. R., Jia, Y., Hu, D., and Ghiron, C. A., 1995, Fluorescence studies with tryptophan analogues: Excited state interactions involving the side chain amino group, J. Phys. Chem. 99: 5713 – 5723.CrossRefGoogle Scholar
  16. 16.
    Petrich, J. W., Chang, M. C., McDonald, D. B., and Fleming, G. R., 1983, On the origin of nonexponential fluorescence decay in tryptophan and its derivatives, J. Am. Chem. Soc. 105: 3824 – 3832.CrossRefGoogle Scholar
  17. 17.
    Fleming, G. R., Morris, J. M., Robbins, R. J., Woolfe, G. J., Thistlewaite, P. J., and Robinson, G. W., 1978, Nonexponential fluorescence decay of aqueous tryptophan and two related peptides by picosecond spectroscopy, Proc. Natl. Acad. Sci. U.S.A. 75: 46524656.Google Scholar
  18. 18.
    Chen, Y., Liu, B., Yu, H.-T., and Barkley, M. D., 1996, The peptide bond quenches indole fluorescence, J. Am. Chem. Soc. 118: 9271 – 9278.CrossRefGoogle Scholar
  19. 19.
    Chen, Y., Liu, B., and Barkley, M. D., 1995, Trifluoroethanol quenches indole fluorescence by excited-state proton transfer, J. Am. Chem. Soc. 117: 5608 – 5609.CrossRefGoogle Scholar
  20. 20.
    Steiner, R. F., and Kirby, E. P., 1969, The interaction of the ground and excited states of indole derivatives with electron scavengers, J. Phys. Chem. 15: 4130 – 4135.CrossRefGoogle Scholar
  21. 21.
    Froehlich, P. M., Gantt, D., and Paramasigamani, V., 1977, Fluorescence quenching of indoles by N,N-dimethylformamide, Photochem. Photobiol. 26: 639 – 642.CrossRefGoogle Scholar
  22. 22.
    Ricci, R. W., and Nesta, J. M., 1976, Inter-and intramolecular quenching of indole fluorescence by carbonyl compounds, J. Phys. Chem. 80: 974 – 980.CrossRefGoogle Scholar
  23. 23.
    Shopova, M., and Genov, N., 1983, Protonated form of histidine 238 quenches the fluorescence of tryptophan 241 in subtilisin novo, Int. J. Peptide Protein Res. 21: 475 – 478.CrossRefGoogle Scholar
  24. 24.
    Shinitzky, M., and Rivnay, B., 1977, Degree of exposure of membrane proteins determined by fluorescence quenching, Biochemistry 16: 982 – 986.CrossRefGoogle Scholar
  25. 25.
    Prutz, W. A., Siebert, F., Butler, J., Land, E. J., Menez, A., and Montenay-Garestier, T., 1982, Intramolecular radical transformations involving methionine, tryptophan and tyrosine, Biochim. Biophys. Acta 705: 139 – 149.CrossRefGoogle Scholar
  26. 26.
    Sanyal, G., Kim, E., Thompson, F. M., and Brady, E. K., 1989, Static quenching of tryptophan fluorescence by oxidized dithiothreitol, Biochem. Biophys. Res. Commun. 165: 772 – 781.CrossRefGoogle Scholar
  27. 27.
    Butler, J., Land, E. J., Prutz, W. A., and Swallow, A. J., 1982, Charge transfer between tryptophan and tyrosine in proteins, Biochim. Biophys. Acta 705: 150 – 162.CrossRefGoogle Scholar
  28. 28.
    Eftink, M. R., 1991, Fluorescence quenching reactions, in Biophysical and Biochemical Aspects of Fluorescence Spectroscopy, T. G. Dewey (ed.), Plenum Press, New York, pp. 1 – 41.Google Scholar
  29. 29.
    Jameson, D. M., and Weber, G., 1981, Resolution of the pH-dependent heterogeneous fluorescence decay of tryptophan by phase and modulation measurements, J. Phys. Chem. 85: 953 – 958.CrossRefGoogle Scholar
  30. 30.
    Chen, R. E, Knutson, J. R., Ziffer, H., and Porter, D., 1991, Fluorescence of tryptophan dipeptides: Correlations with the rotamer model, Biochemistry 30: 5184 – 5195.CrossRefGoogle Scholar
  31. 31.
    Shizuka, H., Serizawa, M., Shimo, T., Saito, I., and Matsuura, T., 1988, Fluorescence-quenching mechanism of tryptophan. Remarkably efficient internal proton-induced quenching and charge-transfer quenching, J. Am. Chem. Soc. 110: 1930 – 1934.CrossRefGoogle Scholar
  32. 32.
    Malak, H., Gryczynski, I., and Lakowicz, J. R., unpublished observations.Google Scholar
  33. 33.
    Ruggiero, A. J., Todd, D. C., and Fleming, G. R., 1990, Subpicosecond fluorescence anisotropy studies of tryptophan in water, J. Am. Chem. Soc. 112: 1003 – 1014.CrossRefGoogle Scholar
  34. 34.
    Lakowicz, J. R., Laczko, G., and Gryczynski, I., 1987, Picosecond resolution of tyrosine fluorescence and anisotropy decays by 2-GHz frequency-domain fluorometry, Biochemistry 26: 82 – 90.CrossRefGoogle Scholar
  35. 35.
    Döring, K., Konermann, L., Surrey, T., and Jährig, F., 1995, A long lifetime component in the tryptophan fluorescence of some proteins, Eue. Biophys. J. 23: 423 – 432.Google Scholar
  36. 36.
    Ross, J. B. A., Laws, W. R., Rousslang, K. W., and Wyssbrod, H. R., 1992, Tyrosine fluorescence and phosphorescence from proteins and polypeptides, in Topics in Fluorescence Spectroscopy, Volume 3, Biochemical Applications, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 1 – 63.Google Scholar
  37. 37.
    Laws, W. R., Ross, J. B. A., Wyssbrod, H. R., Beechem, J. M., Brand, L., and Sutherland, J. C., 1986, Time-resolved fluorescence and 1H NMR studies of tyrosine and tyrosine analogues: Correlation of NMR-determined rotamer populations and fluorescence kinetics, Biochemistry 25: 599 – 607.CrossRefGoogle Scholar
  38. 38.
    Ross, J. B. A., Laws, W. R., Sutherland, J. C., Buku, A., Katsoyannis, P. G., Schwartz, I. L., and Wyssbrod, H. R., 1986, Linked-function analysis of fluorescence decay functions: Resolution of side-chain rotamer populations of a single aromatic amino acid in small polypeptides, Photochem. Photobiol. 44: 365 – 370.CrossRefGoogle Scholar
  39. 39.
    Contino, P. B., and Laws, W. R., 1991, Rotamer-specific fluorescence quenching in tyrosinamide: Dynamic and static interactions, J. Fluoresc. 1 (1): 5 – 13.CrossRefGoogle Scholar
  40. 40.
    Leroy, E., Lami, H., and Laustriat, G., 1971, Fluorescence lifetime and quantum yield of phenylalanine aqueous solutions. Temperature and concentration effects, Photochem. Photobiol. 13: 411 – 421.CrossRefGoogle Scholar
  41. 41.
    Sudhakar, K., Wright, W. W., Williams, S. A., Phillips, C. M., and Vanderkooi, J. M., 1993, Phenylalanine fluorescence and phosphorescence used as a probe of conformation for cod parvalbumin, J. Fluoresc. 3 (2): 57 – 64.CrossRefGoogle Scholar
  42. 42.
    Eftink, M. R., Ghiron, C. A., Kautz, R. A., and Fox, R. O., 1989, Fluorescence lifetime studies with staphylococcal nuclease and its site-directed mutant: Test of the hypothesis that praline isomerism is the basis for nonexponential decays, Biophys. J. 55: 575 – 579.CrossRefGoogle Scholar
  43. 43.
    Dahms, T. E. S., Willis, K. J., and Szabo, A. G., 1995, Conformational heterogeneity of tryptophan in a protein crystal, J. Am. Chem. Soc. 117: 2321 – 2326.CrossRefGoogle Scholar
  44. 44.
    Tanaka, F., and Mataga, N., 1987, Fluorescence quenching dynamics of tryptophan in proteins, Biophys. J. 51: 487 – 495.CrossRefGoogle Scholar
  45. 45.
    Alcala, J. R., 1994, The effect of harmonic conformational trajectories on protein fluorescence and lifetime distributions, J. Chem. Phys. 101: 4578 – 4584.CrossRefGoogle Scholar
  46. 46.
    Eftink, M. R., and Ghiron, C. A., 1975, Dynamics of a protein matrix as revealed by fluorescence quenching, Proc. Natl. Acad. Sci. U.S.A. 72: 3290 – 3294.CrossRefGoogle Scholar
  47. 47.
    Eftink, M. R., and Ghiron, C. A., 1977, Exposure of tryptophanyl residues and protein dynamics, Biochemistry 16: 5546 – 5551.CrossRefGoogle Scholar
  48. 48.
    Eftink, M. R., and Hagaman, K. A., 1986, The viscosity dependence of the acrylamide quenching of the buried tryptophan residue in parvalbumin and ribonuclease T1, Biophys. Chem. 25: 277 – 282.CrossRefGoogle Scholar
  49. 49.
    Longworth, J. W., 1968, Excited state interactions in macromolecules, Photochem. Photobiol. 7: 587 – 594.CrossRefGoogle Scholar
  50. 50.
    James, D. R., Demmer, D. R., Steer, R. P., and Verrall, R. E., 1985, Fluorescence lifetime quenching and anisotropy studies of ribonuclease Ti, Biochemistry 24: 5517 – 5526.CrossRefGoogle Scholar
  51. 51.
    Gryczynski, I., Eftink, M., and Lakowicz, J. R., 1988, Conformation heterogeneity in proteins as an origin of heterogeneous fluorescence decays, illustrated by native and denatured ribonuclease T1, Biochim. Biophys. Acta 954: 244 – 252.CrossRefGoogle Scholar
  52. 52.
    Eftink, M. R., and Ghiron, C. A., 1987, Frequency domain measurements of the fluorescence lifetime of ribonuclease T1, Biophys. J. 52: 467 – 473.CrossRefGoogle Scholar
  53. 53.
    Chen, L. X.-Q., Longworth, J. W., and Fleming, G. R., 198778. Georghiou, S., Thompson, M., and Mukhopadhyay, A. K., 1981, Melittin—phospholipid interaction. Evidence for melittin aggregation, Biochim. Biophys. Acta 642: 429 – 432.Google Scholar
  54. 54.
    Gryczynski, I., and Lakowicz, J. R., unpublished observations.Google Scholar
  55. 55.
    Heinemann, U., and Saenger, W., 1982, Specific protein—nucleic acid recognition in ribonuclease T1-2’-guanylic acid complex: An X-ray study, Nature 299: 27 – 31.CrossRefGoogle Scholar
  56. 56.
    MacKerell, A. D., Nilsson, L., Rigler, R., Heinemann, U., and Saenger, W., 1989, Molecular dynamics simulations of ribonuclease T1: Comparison of the free enzyme and the 2’ GMP—enzyme complex, Proteins: Structure, Function and Genetics 6: 20 – 31.CrossRefGoogle Scholar
  57. 57.
    MacKerell, A. D., Rigler, R., Nilsson, L., Hahn, U., and Saenger, W., 1987, A time-resolved fluorescence, energetic and molecular dynamics study of ribonuclease T1, Biophys. Chem. 26: 247 – 261.CrossRefGoogle Scholar
  58. 58.
    Johnson, J. L., and Raushel, F. M., 1996, Influence of primary sequence transpositions on the folding pathways of ribonuclease T1, Biochemistry 35: 10223 – 10233.CrossRefGoogle Scholar
  59. 59.
    Data courtesy of Dr. John Lee, University of Georgia.Google Scholar
  60. 60.
    Liao, R., Wang, C.-K., and Cheung, H. C., 1992, Time-resolved tryptophan emission study of cardiac troponin I, Biophys. J. 63: 986995.Google Scholar
  61. 61.
    Dines, K., Gakamsky, D. M., Haran, G., Haas, E., Ojcius, D. M., Kourilsky, P., and Pecht, I., 1994, Picosecond fluorescence spectroscopy of a single-chain class I major histocompatibility complex encoded protein in its peptide loaded and unloaded states, Immunol. Lett. 40: 125 – 132.CrossRefGoogle Scholar
  62. 62.
    Kouyama, I., Kinosita, K., and Bcegami, A., 1989, Correlation between internal motion and emission kinetics of tryptophan residues in proteins, Eur. J. Biochem. 182: 517 – 521.CrossRefGoogle Scholar
  63. 63.
    Chen, L. X.-Q., Petrich, J. W., Fleming, G. R., and Perico, A., 1987, Picosecond fluorescence studies of polypeptide dynamics: Fluorescence anisotropies and lifetimes, Chem. Phys. Lett. 139: 55 – 61.CrossRefGoogle Scholar
  64. 64.
    Rischel, C., Thyberg, P., Rigler, R., and Poulsen, F. M., 1996, Time-resolved fluorescence studies of the molten globule state of apomyoglobin, J. Mol. Biol. 257: 877 – 885.CrossRefGoogle Scholar
  65. 65.
    Gakamsky, D. M., Haas, E., Robbins, P., Strominger, J. L., and Pecht, I., 1995, Selective steady-state and time-resolved fluorescence spectroscopy of an HLA-A2—peptide complex, Immunol. Lett. 44: 195 – 201.CrossRefGoogle Scholar
  66. 66.
    Hansen, J. E., Rosenthal, S. J., and Fleming, G. R., 1992, Subpicosecond fluorescence depolarization studies of tryptophan and tryptophanyl residues of proteins, J. Phys. Chem. 96: 3034 – 3040.CrossRefGoogle Scholar
  67. 67.
    Ross, J. B. A., Rousslang, K. W., and Brand, L., 1981, Time-resolved fluorescence and anisotropy decay of the tryptophan in adrenocorticotropin-(1–24), Biochemistry 20: 4361 – 4369.CrossRefGoogle Scholar
  68. 68.
    Nordlund, T. M., and Podolski, D. A., 1983, Streak camera measurement of tryptophan and rhodamine motions with picosecond time resolution, Photochem. Photobiol. 38: 665 – 669.CrossRefGoogle Scholar
  69. 69.
    Nordlund, T. M., Liu, X.-Y, and Sommer, J. H., 1986, Fluorescence polarization decay of tyrosine in lima bean trypsin inhibitor, Proc. Natl. Acad. Sci. U.S.A. 83: 8977 – 8981.CrossRefGoogle Scholar
  70. 70.
    Gryczynski, I., and Lakowicz, J. R., unpublished observations.Google Scholar
  71. 71.
    Brochon, J-C., Wahl, P., and Auchet, J-C., 1974, Fluorescence time-resolved spectroscopy and fluorescence anisotropy decay of the Staphylococcus aureus endonuclease, Eur. J. Biochem. 41: 577 – 583.CrossRefGoogle Scholar
  72. 72.
    Eftink, M. R., Gryczynski, I., Wiczk, W., Laczko, G., and Lakowicz, J. R., 1991, Effects of temperature on the fluorescence intensity and anisotropy decays of staphylococcal nuclease and the less stable nuclease-ConA-SG28 mutant, Biochemistry 30: 8945 – 8953.CrossRefGoogle Scholar
  73. 73.
    Lakowicz, J. R., Gryczynski, I., Szmacinski, H., Cherek, H., and Joshi, N., 1991, Anisotropy decays of single tryptophan proteins measured by GHz frequency-domain fluorometry with collisional quenching, Eur. Biophys. J. 19: 125 – 140.CrossRefGoogle Scholar
  74. 74.
    Lakowicz, J. R., Cherek, H., Gryczynski, I., Joshi, N., and Johnson, M. L., 1987, Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples, Biophys. J. 51: 755 – 768.CrossRefGoogle Scholar
  75. 75.
    John, E., and Jährig, F., 1988, Dynamics of melittin in water and membranes as determined by fluorescence anisotropy decay, Biophys. J. 54: 817 – 827.CrossRefGoogle Scholar
  76. 76.
    Tran, C. D., and Beddard, G. S., 1985, Studies of the fluorescence from tryptophan in melittin, Eur. Biophys. J. 13: 59 – 64.CrossRefGoogle Scholar
  77. 77.
    Lakowicz, J. R., Gryczynski, I., Cherek, H., and Laczko, G., 1991, Anisotropy decays of indole, melittin monomer and melittin tetra-mer by frequency-domain fluorometry and multi-wavelength global analysis, Biophys. Chem. 39: 241 – 251.CrossRefGoogle Scholar
  78. 78.
    Georghiou, S., Thompson, M., and Mukhopadhyay, A. K., 1981, Melittin—phospholipid interaction. Evidence for melittin aggregation, Biochim. Biophys. Acta 642: 429 – 432.CrossRefGoogle Scholar
  79. 79.
    Dufourcq, J., and Faucon, J.-F., 1977, Intrinsic fluorescence study of lipid—protein interactions in membrane models, Biochim. Biophys. Acta 467: 1 – 11.Google Scholar
  80. 80.
    Faucon, J. F., Dufourcq, J., and Lussan, C., 1979, The self-association of melittin and its binding to lipids, FEBS Lett. 102: 187 – 190.CrossRefGoogle Scholar
  81. 81.
    Kaszycki, P., and Wasylewski, Z., 1990, Fluorescence-quenchingresolved spectra of melittin in lipid bilayers, Biochim. Biophys. Acta 1040: 337 – 345.CrossRefGoogle Scholar
  82. 82.
    Papenhuijzen, J., and Visser, A. J. W. G., 1983, Simulation of convoluted and exact emission anisotropy decay profiles, Biophys. Chem. 17: 57 – 65.CrossRefGoogle Scholar
  83. 83.
    Lakowicz, J. R., and Cherek, H., 1981, Proof of nanosecond timescale relaxation in apomyoglobin by phase fluorometry, Biochem. Biophys. Res. Commun. 99: 1173 – 1178.CrossRefGoogle Scholar
  84. 84.
    Pierce, D. W., and Boxer, S. G., 1992, Dielectric relaxation in a protein matrix, J. Phys. Chem. 96: 5560 – 5566.CrossRefGoogle Scholar
  85. 85.
    Lakowicz, J. R., and Cherek, H., 1980, Nanosecond dipolar relaxation in proteins observed by wavelength-resolved lifetimes of tryptophan fluorescence, J. Biol. Chem. 255: 831 – 834.Google Scholar
  86. 86.
    Demchenko, A. P., Gryczynski, I., Gryczynski, Z., Wiczk, W., Malak, H., and Fishman, M., 1993, Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease, Biophys. Chem. 48: 39 – 48.CrossRefGoogle Scholar
  87. 87.
    Grinvald, A., and Steinberg, I. Z., 1974, Fast relaxation process in a protein revealed by the decay kinetics of tryptophan fluorescence, Biochemistry 25: 5170 – 5178.CrossRefGoogle Scholar
  88. 88.
    Georghiou, S., Thompson, M., and Mukhopadhyay, A. K., 1982, Melittin—phospholipid interaction studied by employing the single tryptophan residue as an intrinsic fluorescent probe, Biochim. Biophys. Acta 688: 441 – 452.Google Scholar
  89. 89.
    Kamalov, V. F., Ladokhin, A. S., and Toleutaev, B. N., 1987, Nanosecond intramolecular dynamics of melittin, Translated from Dokl. Akad. Nauk SSSR 296 (3): 180 – 182.Google Scholar
  90. 90.
    Szmacinski, H., Lakowicz, J. R., and Johnson, M., 1988, Time-resolved emission spectra of tryptophan and proteins from frequency-domain fluorescence spectroscopy, Proc. SPIE 909: 293 – 298.CrossRefGoogle Scholar
  91. 91.
    Lakowicz, J. R., Szmacinski, H., and Gryczynski, I., 1988, Picosecond resolution of indole anisotropy decays and spectral relaxation by 2 GHz frequency-domain fluorometry, Photochem. Photobiol. 47: 31 – 41.CrossRefGoogle Scholar
  92. 92.
    Vincent, M., and Gallay, J., 1995, Solvent relaxation around the excited state of indole: Analysis of fluorescence lifetime distributions and time-dependence spectral shifts, J. Phys. Chem. 99: 14931–14941.Google Scholar
  93. 93.
    Demchenko, A. P., 1992, Fluorescence and dynamics in proteins, in Topics in Fluorescence Spectroscopy, Volume 3, Biochemical Applications, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 65 – 111.Google Scholar
  94. 94.
    Demchenko, A. P., 1994, Protein fluorescence, dynamics and function: Exploration of analogy between electronically excited and biocatalytic transition states, Biochim. Biophys. Acta 1209: 149–164.Google Scholar
  95. 95.
    Demchenko, A. P., Apell, H.-J., Sturmer, W., and Fedderson, B., 1993, Fluorescence spectroscopic studies on equilibrium dipole-relaxation dynamics of Na,K-ATPase, Biophys. Chem. 48: 135 – 147.CrossRefGoogle Scholar
  96. 96.
    Knutson, J. R., Walbridge, D. G., and Brand, L., 1982, Decay-associated fluorescence spectra and the heterogeneous emission of alcohol dehydrogenase, Biochemistry 21: 4671 – 4679.CrossRefGoogle Scholar
  97. 97.
    Privat, J.-P., Wahl, P., Auchet, J.-C., and Pain, R. H., 1980, Time resolved spectroscopy of tryptophyl fluorescence of yeast 3-phosphoglycerate kinase, Biophys. Chem. 11: 239 – 248.CrossRefGoogle Scholar
  98. 98.
    Brochon, J. C., Wahl, P., Charlier, M., Maurizot, J. C., and Helene, C., 1977, Time resolved spectroscopy of the tryptophyl fluorescence of the E. coli lac repressor, Biochem. Biophys. Res. Commun. 79: 1261 – 1271.CrossRefGoogle Scholar
  99. 99.
    Willis, K. J., and Szabo, A. G., 1992, Conformation of parathyroid hormone: Time-resolved fluorescence studies, Biochemistry 31: 8924 – 8931.CrossRefGoogle Scholar
  100. 100.
    Kim, S.-J., Chowdhury, F. N., Stryjewski, W., Younathan, E. S., Russo, P. S., and Barkley, M. D., 1993, Time-resolved fluorescence of the single tryptophan of Bacillus stearothennophilus phosphofructokinase, Biophys. J. 65: 215 – 226.CrossRefGoogle Scholar
  101. 101.
    Robbins, D. J., Deibel, M. R., and Barkley, M. D., 1985, Tryptophan fluorescence of terminal deoxynucleotidyl transferase: Effects of quenchers on time-resolved emission spectra, Biochemistry 24: 7250 – 7257.CrossRefGoogle Scholar
  102. 102.
    Ross, J. A., Schmidt, C. J., and Brand, L., 1981, Tune-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase, Biochemistry 20: 4369 – 4377.CrossRefGoogle Scholar
  103. 103.
    She, M., Dong, W-J., Umeda, P. K., and Cheung, H. C., 1997, Time-resolved fluorescence study of the single tryptophans of engineered skeletal muscle troponin C, Biophys. J. 73: 1042 – 1055.CrossRefGoogle Scholar
  104. 104.
    Merrill, A. R., Steer, B. A., Prentice, G. A., Weller, M. J., and Szabo, A. G., 1997, Identification of a chameleon-like pH-sensitive segment within the colicin El channel domain that may serve as the pH-activated trigger for membrane bilayer association, Biochemistry 36: 6874 – 6884.CrossRefGoogle Scholar
  105. 105.
    Hof, M., Fleming, G. R., and Fidler, V., 1996, Time-resolved fluorescence study of a calcium-induced conformational change in prothrombin fragment 1, Proteins: Structure, Function and Genetics 24: 485 – 494.CrossRefGoogle Scholar
  106. 106.
    Lakowicz, J. R., and Baiter, A., 1982, Resolution of initially excited and relaxed states of tryptophan fluorescence by differential wavelength deconvolution of time-resolved fluorescence decays, Biophys. Chem. 15: 353 – 360.CrossRefGoogle Scholar
  107. 107.
    Verkshin, N., Vincent, M., and Gallay, J., 1992, Excited-state lifetime distributions of tryptophan fluorescence in polar solutions. Evidence for solvent exciplex formation, Chem. Phys. Lett. 199: 459 – 464.CrossRefGoogle Scholar
  108. 108.
    Vincent, M., Gallay, J., and Demchenko, A. P., 1997, Dipolar relaxation around indole as evidenced by fluorescence lifetime distributions and time-dependence spectral shifts, J. Fluoresc. 7 (1): 107S – 1105.Google Scholar
  109. 109.
    Sopkova, J., Gallay, J., Vincent, M., Pancoska, P., and Lewit-Bentley, A., 1994, The dynamic behavior of annexin V as a function of calcium ion binding: A circular dichroism, UV absorption, and steady state and time-resolved fluorescence study, Biochemistry 33: 4490 – 4499.CrossRefGoogle Scholar
  110. 110.
    Rouviere, N., Vincent, M., Craescu, C. T., and Gallay, J., 1997, Immunosuppressor binding to the immunophilin FKBP59 affects the local structural dynamics of a surface (3-strand: Time-resolved fluorescence study, Biochemistry 36: 7339 – 7352.CrossRefGoogle Scholar
  111. 111.
    Suwaliyan, A., and Klein, U. K. A., 1989, Picosecond study of solute—solvent interaction of the excited state of indole, Chem. Phys. Lett. 159: 244 – 250.Google Scholar
  112. 112.
    Helms, M. K., Petersen, C. E., Bhagavan, N. V., and Jameson, D. M., 1997, Time-resolved fluorescence studies on site-directed mutants of human serum albumin, FEBS Lett. 408: 67 – 70.CrossRefGoogle Scholar
  113. 113.
    Eftink, M. R., Ramsay, G. D., Burns, L., Maki, A. H., Mann, C. J., Matthews, C. R., and Ghiron, C. A., 1993, Luminescence studies of trp repressor and its single-tryptophan mutants, Biochemistry 32: 9189 – 9198.CrossRefGoogle Scholar
  114. 114.
    Royer, C. A., 1992, Investigation of the structural determinants of the intrinsic fluorescence emission of the trp repressor using single tryptophan mutants, Biophys. J. 63: 741 – 750.CrossRefGoogle Scholar
  115. 115.
    Feder, L., Tauc, P., Herve, G., Ladjimi, M. M., and Brochon, J.-C., 1992, The tryptophan residues of aspartate transcarbamylase: Site-directed mutagenesis and time-resolved fluorescence spectroscopy, Biochemistry 31: 12504 – 12513.CrossRefGoogle Scholar
  116. 116.
    Bismuto, E., Irace, G., D’Auria, S., Rossi, M., and Nucci, R., 1997, Multitryptophan-fluorescence emission decay of ß-glycosidase from the extremely thermophilic archaeon Sulfolobus solfataricus, Eur. J. Biochem. 244: 53 – 58.CrossRefGoogle Scholar
  117. 117.
    Hirsch, R. E., and Nagel, R. L., 1981, Conformational studies of hemoglobins using intrinsic fluorescence measurements, J. Biol. Chem. 256: 1080 – 1083.Google Scholar
  118. 118.
    Hirsch, R. E., and Peisach, J., 1986, A comparison of the intrinsic fluorescence of red kangaroo, horse and sperm whale metmyoglobins, Biochim. Biophys. Acta 872: 147 – 153.CrossRefGoogle Scholar
  119. 119.
    Hirsch, R. E., and Noble, R. W., 1987, Intrinsic fluorescence of carp hemoglobin: A study of the R - T transition, Biochim. Biophys. Acta 914: 213 – 219.CrossRefGoogle Scholar
  120. 120.
    Sebban, P., Coppey, M., Alpert, B., Lindqvist, L., and Jameson, D. M., 1980, Fluorescence properties of porphyrin-globin from human hemoglobin, Photochem. Photobiol. 32: 727 – 731.CrossRefGoogle Scholar
  121. 121.
    Hochstrasser, R. M., and Negus, D. K., 1984, Picosecond fluorescence decay of tryptophans in myoglobin, Proc. Natl. Acad. Sci. U.S.A. 81: 4399 – 4403.CrossRefGoogle Scholar
  122. 122.
    Bismuto, E., Trace, G., and Gratton, E., 1989, Multiple conformational states in myoglobin revealed by frequency domain fluorometry, Biochemistry 28: 1508 – 1512.CrossRefGoogle Scholar
  123. 123.
    Willis, K. J., Szabo, A. G., Zuker, M., Ridgeway, J. M., and Alpert, B., 1990, Fluorescence decay kinetics of the tryptophyl residues of myoglobin: Effect of heme ligation and evidence for discrete lifetime components, Biochemistry 29: 5270 – 5275.CrossRefGoogle Scholar
  124. 124.
    Gryczynski, Z., Lubkowski, J., and Bucci, E., 1995, Heme–protein interactions in horse heart myoglobin at neutral pH and exposed to acid investigated by time-resolved fluorescence in the pico-to nanosecond time range, J. BioL Chem. 270: 19232 – 19237.CrossRefGoogle Scholar
  125. 125.
    Janes, S. M., Holtom, G., Ascenzi, P., Brundri, M., and Hochstrasser, R. M., 1987, Fluorescence and energy transfer of tryptophans in Aplysia myoglobin, Biophys. J. 51: 653 – 660.CrossRefGoogle Scholar
  126. 126.
    Szabo, A. G., Krajcarski, D., Zuker, M., and Alpert, B., 1984, Conformational heterogeneity in hemoglobin as determined by picosecond fluorescence decay measurements of the tryptophan residues, Chem. Phys. Lett. 108: 145 – 149.CrossRefGoogle Scholar
  127. 127.
    Bucci, E., Gryczynski, Z., Fronticelli, C., Gryczynski, I., and Lakowicz, J. R., 1992, Fluorescence intensity and anisotropy decays of the intrinsic tryptophan emission of hemoglobin measured with a 10-GHz fluorometer using front-face geometry on a free liquid surface, J. Fluoresc. 2 (1): 29 – 36.CrossRefGoogle Scholar
  128. 128.
    Steiner, R. F., and Kolinski, R., 1968, The phosphorescence of oligopeptides containing tryptophan and tyrosine, Biochemistry 7: 1014 - 1018.CrossRefGoogle Scholar
  129. 129.
    Purkey, R. M., and Galley, W. C., 1970, Phosphorescence studies of environmental heterogeneity for tryptophyl residues in proteins, Biochemistry 9: 3569 – 3575.CrossRefGoogle Scholar
  130. 130.
    Strambini, G. B., and Gonnelli, M., 1985, The indole nucleus triplet-state lifetime and its dependence on solvent microviscosity, Chem. Phys. Lett. 115: 196 – 200.CrossRefGoogle Scholar
  131. 132.
    Strambini, G. B., and Gonnelli, M., 1990, Tryptophan luminescence from liver alcohol dehydrogenase in its complexes with coenzyme. A comparative study of protein conformation in solution, Biochemistry 29: 196 – 203.CrossRefGoogle Scholar
  132. 133.
    Strambini, G. B., and Gabellieri, E., 1989, Phosphorescence properties and protein structure surrounding tryptophan residues in yeast, pig, and rabbit glyceraldehyde-3-phosphate dehydrogenase, Biochemistry 28: 160 – 166.CrossRefGoogle Scholar
  133. 134.
    Cioni, P., Puntoni, A., and Strambini, G. B., 1993, Tryptophan phosphorescence as a monitor of the solution structure of phosphoglycerate kinase from yeast, Biophys. Chem. 46: 47 – 55.CrossRefGoogle Scholar
  134. 135.
    Burns, L. E., Maki, A. H., Spotts, R., and Matthews, K. S., 1993, Characterization of the two tryptophan residues of the lactose repressor from Escherichia coli by phosphorescence and optical detection of magnetic resonance, Biochemistry 32: 12821 – 12829.CrossRefGoogle Scholar
  135. 136.
    Gabellieri, E., Rahuel-Clemont, S., Branlant, G., and Strambini, G. B., 1996, Effects of NAD+ binding on the luminescence of tryptophans 84 and 310 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus, Biochemistry 35: 12549 – 12559.CrossRefGoogle Scholar
  136. 137.
    Strambini, G. B., Cioni, P., and Cook, P. F., 1996, Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway, Biochemistry 35: 8392 – 8400.CrossRefGoogle Scholar
  137. 138.
    Kai, Y., and Imakubo, K., 1979, Temperature dependence of the phosphorescence lifetimes of heterogeneous tryptophan residues in globular proteins between 293 and 77 K, Photochem. Photobiol. 29: 261 – 265.CrossRefGoogle Scholar
  138. 139.
    Domanus, J., Strambini, G. B., and Galley, W. C., 1980, Heterogeneity in the thermally-induced quenching of the phosphorescence of multi-tryptophan proteins, Photochem. Photobiol. 31: 15 – 21.CrossRefGoogle Scholar
  139. 140.
    Barboy, N., and Feitelson, J., 1985, Quenching of tryptophan phosphorescence in alcohol dehydrogenase from horse liver and its temperature dependence, Photochem. Photobiol. 41: 9 – 13.CrossRefGoogle Scholar
  140. 141.
    Saviotti, M. L., and Galley, W. C., 1974, Room temperature phosphorescence and the dynamic aspects of protein structure, Proc. NatL Acad. Sci. U.S.A. 71: 4154 – 4158.CrossRefGoogle Scholar
  141. 142.
    Strambini, G. B., 1983, Singular oxygen effects on the room-temperature phosphorescence of alcohol dehydrogenase from horse liver, Biophys. J. 43: 127 – 130.CrossRefGoogle Scholar
  142. 143.
    Papp, S., and Vanderkooi, J. M., 1989, Tryptophan phosphorescence at room temperature as a tool to study protein structure and dynamics, Photochem. Photobiol. 49: 775 – 784.CrossRefGoogle Scholar
  143. 144.
    Vanderkooi, J. M., and Berger, J. W., 1989, Excited triplet states used to study biological macromolecules at room temperature, Biochim. Biophys. Acta 976: 1 – 27.CrossRefGoogle Scholar
  144. 145.
    Subramaniam, V., Gafni, A., and Steel, D. G., 1996, Time-resolved tryptophan phosphorescence spectroscopy: A sensitive probe of protein folding and structure, IEEE J. 2: 1107 – 1114.Google Scholar
  145. 146.
    Schauerte, J. A., Steel, D. G., and Gafni, A., 1997, lime-resolved room temperature tryptophan phosphorescence in proteins, Methods Enrymol. 278: 49 – 71.Google Scholar
  146. 147.
    Vanderkooi, J. M., Calhoun, D. B., and Englander, S. W., 1987, On the prevalence of room-temperature protein phosphorescence, Science 230: 568 – 569.CrossRefGoogle Scholar
  147. 148.
    Strambini, G. B., and Gabellieri, E., 1990, Temperature dependence of tryptophan phosphorescence in proteins, Photochem. Photobiol. 51: 643 – 648.Google Scholar
  148. 149.
    Strambini, G. B., and Gonnelli, M., 1995, Tryptophan phosphorescence in fluid solution, J. Am. Chem. Soc. 117: 7646 – 7651.CrossRefGoogle Scholar
  149. 150.
    Gonnelli, M., Puntoni, A., and Strambini, G. B., 1992, Tryptophan phosphorescence of ribonuclease T1 as a probe of protein flexibility, J. Fluoresc. 2 (3): 157 – 165.CrossRefGoogle Scholar
  150. 151.
    Cioni, P., Gabellieri, E., Gonnelli, M., and Strambini, G. B., 1994, Heterogeneity of protein conformation in solution from the lifetime of tryptophan phosphorescence, Biophys. Chem. 52: 25 – 34.CrossRefGoogle Scholar
  151. 152.
    Schlyer, B. D., Schauerte, J. A., Steel, D. G., and Gafni, A., 1994, Time-resolved room temperature protein phosphorescence: Non-exponential decay from single emitting tryptophans, Biophys. J. 67: 1192 – 1202.CrossRefGoogle Scholar
  152. 153.
    Hansen, J. E., Steel, D. G., and Gafni, A., 1996, Detection of a pH-dependent conformational change in azurin by time-resolved phosphorescence, Biophys. J. 71: 2138 – 2143.CrossRefGoogle Scholar
  153. 154.
    Subramaniam, V., Bergenhem, N. C. H., Gafni, A., and Steel, D. G., 1995, Phosphorescence reveals a continued slow annealing of the protein core following reactivation of Escherichia coli alkaline phosphatase, Biochemistry 34: 1133 – 1136.CrossRefGoogle Scholar
  154. 155.
    Gonnelli, M., and Strambini, G. B., 1995, Phosphorescence lifetime of tryptophan in proteins, Biochemistry 34: 13847 – 13857.CrossRefGoogle Scholar
  155. 156.
    Strambini, G. B., Cioni, P., and Felicioli, R. A., 1987, Characterization of tryptophan environments in glutamate dehydrogenases from temperature-dependent phosphorescence, Biochemistry 26: 4968 – 4975.CrossRefGoogle Scholar
  156. 157.
    Tanaka, F., Tamai, N., Mataga, N., Tonomura, B., and Hiromi, K., 1994, Analysis of internal motion of single tryptophan in Streptomyces subtilisin inhibitor from its picosecond time-resolved fluorescence, Biophys. J. 67: 874 – 880.CrossRefGoogle Scholar
  157. 158.
    Tanaka, E, and Mataga, N., 1992, Non-exponential decay of fluorescence of tryptophan and its motion in proteins, in Dynamics and Mechanisms of Photoinduced Electron Transfer and Related Phenomena, N. Mataga, T Okada, and H. Masuhara (eds.), North-Holland, Amsterdam, pp. 501 – 512.Google Scholar
  158. 159.
    Eisenberg, D., and Crothers, D., 1979, Physical Chemistry with Applications to the Life Sciences,seep. 240.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Joseph R. Lakowicz
    • 1
  1. 1.University of Maryland School of MedicineBaltimoreUSA

Personalised recommendations