Skip to main content

Abstract

Upon excitation with polarized light, the emission from many samples is also polarized. The extent of polarization of the emission is described in terms of the anisotropy (r). Samples exhibiting nonzero anisotropies are said to display polarized emission. The origin of these phenomena is based on the existence of transition moments for absorption and emission which lie along specific directions within the fluorophore structure. In homogeneous solution the ground-state fluorophores are all randomly oriented. When exposed to polarized light, those fluorophores which have their absorption transition moments oriented along the electric vector of the incident light are preferentially excited. Hence, the excited-state population is not randomly oriented. Instead, there is a somewhat larger number of excited molecules having their transition moments oriented along the electric vector of the polarized exciting light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jabofiski, A., 1960, On the notion of emission anisotropy, Bull. Acad. Pol. Sci. Ser. A 8: 259–264.

    Google Scholar 

  2. Weber, G., 1952, Polarization of the fluorescence of macromolecules. I. Theory and experimental method, Biochem. J. 51: 145–155.

    CAS  Google Scholar 

  3. Weber, G., 1966, Polarization of the fluorescence of solutions, in Fluorescence and Phosphorescence Analysis, D. M. Hercules (ed.), John Wiley amp; Sons, New York, pp. 217–240.

    Google Scholar 

  4. Selényi, P., 1939, Wide-angle interferences and the nature of the elementary light sources, Phys. Rev. 56: 477–479.

    Article  Google Scholar 

  5. Lakowicz, J. R., and Gryczynski, I., 1997, Multiphoton excitation of biochemical fluorophores, in Topics in Fluorescence Spectroscopy, Volume 5, Nonlinear and Two-Photon-Induced Fluorescence, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 87–144.

    Google Scholar 

  6. Weber, G., 1972, Use of fluorescence in biophysics: Some recent developments, Annu. Rev. Biophys. Bioeng. 1: 553–570.

    Article  CAS  Google Scholar 

  7. Shinitzky, M., and Barenholz, Y., 1974, Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate, J. Biol. Chem. 249: 2652–2657.

    CAS  Google Scholar 

  8. Michl, J., and Thulstrup, E. W., 1986, Spectroscopy with Polarized Light, VCH Publishers, New York.

    Google Scholar 

  9. Albinsson, B., Kubista, M., Nordén, B., and Thulstrup, E. W., 1989, Near-ultraviolet electronic transitions of the tryptophan chromophore: Linear dichroism, fluorescence anisotropy, and magnetic circular dichroism spectra of some indole derivatives, J. Phys. Chem. 93: 6646–6655.

    Article  CAS  Google Scholar 

  10. Albinsson, B., Eriksson, S., Lyng, R., and Kubista, M., 1991, The electronically excited states of 2-phenylindole, Chem. Phys. 151: 149–157.

    Article  CAS  Google Scholar 

  11. Kubista, M., Akerman, B., and Albinsson, B., 1989, Characterization of the electronic structure of 4’,6-diamidino-2-phenylindole, J. Am. Chem. Soc. 111: 7031–7035.

    Article  CAS  Google Scholar 

  12. Vincent, M., de Foresta, B., Gallay, J., and Alfsen, A., 1982, Nanosecond fluorescence anisotropy decays of n-(9-anthroyloxy) fatty acids in dipalmitoylphosphatidylcholine vesicles with regard to isotropic solvents, Biochemistry 21: 708–716.

    Article  CAS  Google Scholar 

  13. Weber, G., 1960, Fluorescence-polarization spectrum and electronic-energy transfer in tyrosine, tryptophan and related compounds, Biochem. J. 75: 335–345.

    CAS  Google Scholar 

  14. Valeur, B., and Weber, G., 1977, Resolution of the fluorescence excitation spectrum of indole into the 1La and 1Lb excitation bands, Photochem. Photobiol. 25: 441–444.

    Article  CAS  Google Scholar 

  15. Eftink, M. R., Selvidge, L. A., Callis, P. R., and Rehms, A. A., 1990, Photophysics of indole derivatives: Experimental resolution of La and Lb transitions and comparison with theory, J. Phys. Chem. 94: 3469–3479.

    Article  CAS  Google Scholar 

  16. Yamamoto, Y., and Tanaka, J., 1972, Polarized absorption spectra of crystals of indole and its related compounds, Bull. Chem. Soc. Jpn. 65: 1362–1366.

    Article  Google Scholar 

  17. Suwaiyan, A., and Zwarich, R., 1987, Absorption spectra of substituted indoles in stretched polyethylene films, SpectrochimActa, Part A 41A: 605–609.

    Article  Google Scholar 

  18. Weber, G., and Shinitzky, M., 1970, Failure of energy transfer between identical aromatic molecules on excitation at the long wave edge of the absorption spectrum, Proc. Natl. Acad. Sci. U.S.A. 65: 823–830.

    Article  CAS  Google Scholar 

  19. Kawski, A., 1992, Fotoluminescencja Rortworów, Wydawnictwo Naukowe PWN, Warsaw, p. 306.

    Google Scholar 

  20. Jabofiski, A., 1970, Anisotropy of fluorescence of molecules excited by excitation transfer, Acta Phys. Pol. A 38: 453–458. 42.

    Google Scholar 

  21. Baumann, J., and Fayer, M. D., 1986, Excitation transfer in disordered two-dimensional and anisotropie three-dimensional systems: Effects of spatial geometry on time-resolved observables, J. Chem. Phys. 85: 4087–4107.

    Article  CAS  Google Scholar 

  22. Teale, E W. J., 1969, Fluorescence depolarization by light scattering in turbid solutions, Photochem. Photobiol. 10:363–374. 44.

    Google Scholar 

  23. Lentz, B. R., 1979, Light scattering effects in the measurement of membrane microviscosity with diphenylhexatriene, Biophys. J. 25: 489–494.

    Article  CAS  Google Scholar 

  24. Berberan-Santos, M. N., Nunes Pereira, E. J., and Martinho, J. M. G., 1995, Stochastic theory of molecular radiative transport, J. Chem. Phys. 103: 3022–3028.

    Article  CAS  Google Scholar 

  25. Nunes Pereira, E. J., Berberan-Santos, M. N., and Martinho, J. M. G., 1996, Molecular radiative transport. II. Monte-Carlo simulation, J. Chem. Phys. 104: 8950–8965.

    Article  Google Scholar 

  26. Perrin, E, 1929, La fluorescence des solutions. Induction moléculaire. Polarisation et durée d’émission. Photochimie, Ann. Phys. Ser. 10 12: 169–275.

    CAS  Google Scholar 

  27. Perrin, E, 1926, Polarisation de la lumière de fluorescence. Vie moyenne des molécules dans l’état excité, J. Phys. Radium V, Ser. 67: 390–401.

    Google Scholar 

  28. Perrin, E, 1931, Fluorescence. Durée élémentaire d’émission lumineuse, Conférences d’Actualités Scientifiques et Industrielles XXII: 2–41.

    Google Scholar 

  29. Weber, G., 1953, Rotational Brownian motion and polarization of the fluorescence of solutions, Adv. Protein Chem. 8: 415–459.

    Article  CAS  Google Scholar 

  30. Yguerabide, J., Epstein, H. E, and Stryer, L., 1970, Segmental flexibility in an antibody molecule, J. Mol. Biol. 51:573–590. 50.

    Google Scholar 

  31. Weber, G., 1952, Polarization of the fluorescence of macromolecules. II. Fluorescence conjugates of ovalbumin and bovine serum albumin, Biochem. J. 51: 155–167.

    CAS  Google Scholar 

  32. Laurence, D. J. R., 1952, A study of the absorption of dyes on bovine serum albumin by the method of polarization of fluorescence, Biochem. J. 51: 168–180.

    CAS  Google Scholar 

  33. Gottlieb, Y. Ya., and Wahl, E, 1963, Étude théorique de la polarisation de fluorescence des macromolécules portant un groupe émetteur mobile autour d’un axe de rotation, J. Chim. Phys. 60: 849–856.

    Google Scholar 

  34. Ferguson, B. Q., and Yang, D. C. H., 1986, Methionyl-tRNA synthetase induced 3’-terminal and delocalized conformational transition in tRNAtMe1: Steady-state fluorescence of tRNA with a single fluorophore, Biochemistry 25: 529–539.

    Article  CAS  Google Scholar 

  35. Buchner, J., 1996, Supervising the fold: Functional principals of molecular chaperones, FASEB J. 10: 10–19.

    CAS  Google Scholar 

  36. Ellis, R. J., 1996, The Chaperonins, Academic Press, New York.

    Google Scholar 

  37. Braig, K., Otwinowski, Z., Hegde, R., Bolsvert, D. C., Joachimiak, A., Horwich, A. L., and Sigler, R B., 1994, The crystal structure of the bacterial chaperonin GroEL at A, Nature 371: 578–586.

    Article  CAS  Google Scholar 

  38. Gorovits, B. M., and Horowitz, P. M., 1995, The molecular chaperonin cpn60 displays local flexibility that is reduced after binding with an unfolded protein, J. Biol. Chem. 270: 13057–13062.

    Article  CAS  Google Scholar 

  39. Lim, K., Jameson, D. M., Gentry, C. A., and Herron, J. N., 1995, Molecular dynamics of the anti–fluorescein 4–4–20 antigen–binding fragment. 2. Time–resolved fluorescence spectroscopy, Biochemistry 34: 6975 – 6984.

    Article  CAS  Google Scholar 

  40. Lukas, T. J., Burgess, W. H., Prendergast, E G., Lau, W., and Watterson, D. M., 1986, Calmodulin binding domains: Characterization of a phosphorylation and calmodulin binding site from myosin light chain kinase, Biochemistry 25: 1458–1464.

    Article  CAS  Google Scholar 

  41. Malencik, D. A., and Anderson, S. R., 1984, Peptide binding by calmodulin and its proteolytic fragments and by troponin C, Biochemistry 23: 2420–2428.

    Article  CAS  Google Scholar 

  42. LeTilly, V., and Royer, C. A., 1993, Fluorescence anisotropy assays implicate protein-protein interactions in regulating trp repressor DNA binding, Biochemistry 32: 7753–7758.

    Article  CAS  Google Scholar 

  43. Runnels, L. W., and Scarlata, S. F., 1995, Theory and application of fluorescence homotransfer to melittin oligomerization, Biophys. J. 69: 1569–1583.

    Article  CAS  Google Scholar 

  44. Shinitzky, M., Dianoux, A. C., Gifler, C., and Weber, G., 1971, Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluorescence probes I. Synthetic micelles, Biochemistry 10: 2106–2113.

    Article  CAS  Google Scholar 

  45. Cogen, U., Shinitzky, M., Weber, G., and Nishida, T., 1973, Micro-viscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes, Biochemistry 12: 521–528.

    Article  Google Scholar 

  46. Thulborn, K. R., Tilley, L. M., Sawyer, W. H., and Treloar, E E., 1979, The use of n-(9-anthroyloxy) fatty acids to determine fluidity and polarity gradients in phospholipid bilayers, Biochim. Biophys. Acta 558: 166–178.

    Article  CAS  Google Scholar 

  47. Thulbom, K. R., and Beddard, G. S., 1982, The effects of cholesterol on the time-resolved emission anisotropy of 12-(9-anthroyloxy)stearic acid in dipalmitoylphosphatidylcholine bilayers, Biochim Biophys. Acta 693: 246–252.

    Article  Google Scholar 

  48. Lakowicz, J. R., and Weber, G., 1980, Nanosecond segmental mobilities of tryptophan residues in proteins observed by lifetime-resolved fluorescence anisotropies, Biophys. J.32:591–601. Lakowicz, J. R., 49. Maliwal, B. P., Cherek, H., and Baiter, A., 1983, Rotational freedom of tryptophan residues in proteins and peptides, Biochemistry 22: 1741–1752.

    Article  Google Scholar 

  49. Lakowicz, J. R., and Maliwal, B. P., 1983, Oxygen quenching and fluorescence depolarization of tyrosine residues in proteins, J. Biol. Chem. 258: 4794–4801.

    CAS  Google Scholar 

  50. Eftink, M., 1983, Quenching-resolved emission anisotropy studies with single and multitryptophan-containing proteins, Biophys. J. 43: 323–334.

    Article  CAS  Google Scholar 

  51. Lakos, Z., Szarka, A., Koszorús, L., and Somogyi, B.,1995, Quenching-resolved emission anisotropy: A steady state fluorescence method to study protein dynamics, J. Photochem. Photobiol., B: Biol. 27: 55–60.

    Google Scholar 

  52. Bentz, J. P., Beyl, P., Beinert, G., and Weill, G., 1973, Simultaneous measurements of fluorescence polarization and quenching: A specially designed instrument and an application to the micro-Brownian motion of polymer chains, Eur. Polym. J. 11: 711–718.

    Article  Google Scholar 

  53. Brown, K., and Soutar, I., 1974, Fluorescence quenching and polarization studies of segmental motion in polystyrene, Eur. Polym. J. 10: 433–437.

    Article  CAS  Google Scholar 

  54. Chen, R. F, 1976, Quenching of the fluorescence of proteins by silver nitrate, Arch. Biochem. Biophys. 168: 605–622.

    Google Scholar 

  55. Sanyal, G., Charlesworth, M. C., Ryan, R. J., and Prendergast, R G., 1987, Tryptophan fluorescence studies of subunit interaction and rotational dynamics of human luteinizing hormone, Biochemistry 26: 1860–1866.

    Article  CAS  Google Scholar 

  56. Soleillet, P., 1929, Sur les paramètres caractérisant la polarisation partielle de la lumière dans les phénomènes de fluorescence, Ann. Phys. Biol. Med. 12: 23–97.

    CAS  Google Scholar 

  57. Kawski, A., 1986, Fluorescence anisotropy as a source of information about different photophysical processes, in Progress and Trends in Applied Optical Spectroscopy, D. Fassler, K.-H. Feller, and B. Wilhelmi (eds.), Teubner-Texte zur Physik, Vol. 13, Teubner Verlagsgesellschaft, Leipzig, pp. 6–34.

    Google Scholar 

  58. Kawski, A., 1993, Fluorescence anisotropy: Theory and applications of rotational depolarization, Crit. Rev. Anal. Chem. 23: 459–529.

    Article  CAS  Google Scholar 

  59. Gurinovich, G. P., Sarzhevskii, A. M., and Sevchenko, A. N., 1963, New data on the dependence of the degree of polarization on the wavelength of fluorescence, Opt. Spectrosc. 14: 428–432.

    Google Scholar 

  60. Mazurenko, Y. T., and Bakhshiev, N. G., 1970, Effect of orientation dipole relaxation on spectral, time, and polarization characteristics of the luminescence of solutions, Opt. Spectrosc. 28: 490–494.

    Google Scholar 

  61. Gakamskii, D. M., Nemkovich, N. A., Rubinov, A. N., and Tomin, V. I., 1988, Light-induced rotation of dye molecules in solution, Opt. Spectrosc. 64: 406–407.

    Google Scholar 

  62. Matayoshi, E. D., and Kleinfeld, A. M., 1981, Emission wavelength-dependent decay of the 9-anthroyloxy-fatty acid membrane probes, Biophys. J. 35: 215–235.

    Article  CAS  Google Scholar 

  63. Thulstrup, E. W., and Michl, J., 1988, Polarized absorption spectroscopy of molecules aligned in stretched polymers, Spectrochim. Acta, Part A 44: 767–782.

    Google Scholar 

  64. Michl, J., and Thulstrup, E. W., 1987, Ultraviolet and infrared linear dichroism: Polarized light as a probe of molecular and electronic structure, Acc. Chem. Res. 20: 192–199.

    Article  CAS  Google Scholar 

  65. Van Gurp, M., and Levine, Y. K., 1989, Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. I. Theory, J. Chem. Phys. 90: 4095–4100.

    Article  Google Scholar 

  66. Matsuoka, Y, and Yamaoka, K., 1980, Film dichroism. V. Linear dichroism study of acridine dyes in films with emphasis on the electronic transitions involved in the long-wavelength band of the absorption spectrum, Bull. Chem. Soc. Jpn 53: 2146–2151.

    Article  CAS  Google Scholar 

  67. Kawski, A., and Gryczynski, Z., 1986, On the determination of transition-moment directions from emission anisotropy measurements, Z Naturforsch. A 41: 1195–1199.

    Google Scholar 

  68. Kawski, A., Gryczynski, Z., Gryczynski, I., Lakowicz, J. R., and Piszczek, G., 1996, Photoselection of luminescent molecules in anisotropic media in the case of two-photon excitation. Part II. Experimental studies of Hoechst 33342 in stretched poly(vinyl alcohol) films, Z. Naturforsch. A 51: 1037–1041.

    CAS  Google Scholar 

  69. Matsuoka, Y., and Norden, B., 1982, Linear dichroism study of 9-substituted acridines in stretched poly(vinyl alcohol) film, Chem. Phys. Lett. 85:302–306.

    Google Scholar 

  70. Holmén, A., Broo, A., Albinsson, B., and B. Nordén, 1997, Assignment of electronic transition moment directions of adenine from linear dichroism measurements, J. Am. Chem. Soc. 119: 122401 2250.

    Google Scholar 

  71. Holmén, A., Nordén, B., and Albinsson, B., 1997, Electronic transition moments of 2-aminopurine, J. Am. Chem. Soc. 119:3114–3121.

    Google Scholar 

  72. Albinsson, B., Kubista, M., Sandros, K., and Nordén, B., 1990, Electronic linear dichroism spectrum and transition moment directions of the hypermodified nucleic acid base wye, J. Phys. Chem. 94: 4006–4011.

    Article  CAS  Google Scholar 

  73. Hall, R. D., Valeur, B., and Weber, G., 1985, Polarization of the fluorescence of triphenylene: A planar molecule with three-fold symmetry, Chem. Phys. Leu. 116(23):202–205.

    Google Scholar 

  74. Lakowicz, J. R., and Gryczynski, I., 1997, Multiphoton excitation of biochemical fluorophores, in Topics in Fluorescence Spectroscopy, Volume 5, Nonlinear and Two-Photon-Induced Fluorescence,J. R. Lakowicz (ed.), Plenum Press, New York, pp. 87–144.

    Google Scholar 

  75. Callis, P. R., 1997, The theory of two-photon induced fluorescence anisotropy, in Topics in Fluorescence Spectroscopy, Volume 5: Nonlinear and Two-Photon-Induced Fluorescence,J. R. Lakowicz (ed.), Plenum Press, New York, pp. 1–42.

    Google Scholar 

  76. Johnson, C. K., and Wan, C., 1997, Anisotropy decays induced by two-photon excitation, in Topics in Fluorescence Spectroscopy, Volume 5, Nonlinear and Two-Photon-Induced Fluorescence, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 43–85.

    Google Scholar 

  77. Callis, P. R., 1997, Two-photon induced fluorescence, Annu. Rev. Phys. Chem. 48: 271–297.

    Article  CAS  Google Scholar 

  78. Lakowicz, J. R., Gryczynski, I., Gryczynski, Z., Danielson, E., and Wirth, M. J., 1992, Time-resolved fluorescence intensity and anisotropy decays of 2,5-diphenyloxazole by two-photon excitation and frequency-domain fluorometry, J. Phys. Chem. 96: 3000–3006.

    Article  CAS  Google Scholar 

  79. Lakowicz, J. R., Gryczynski, I., Kulba, J., and Danielsen, E., 1992, Two photon-induced fluorescence intensity and anisotropy decays of diphenylhexatriene in solvents and lipid bilayers, J. Fluoresc. 2 (4): 247–258.

    Article  CAS  Google Scholar 

  80. Gryczynski, I., unpublished observations.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1999). Fluorescence Anisotropy. In: Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3061-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3061-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3063-0

  • Online ISBN: 978-1-4757-3061-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics