Advertisement

Electrochemical Behavior at Porous Electrodes; Applications to Capacitors

  • B. E. Conway

Abstract

The point has often been made that electrochemistry is a two-dimensional science since its processes, including charging or discharging of double layers, proceed on surfaces rather than in bulk. When the condition of 2-dimensionality is imposed on an electrode reaction (e.g., at a plane electrode interface), then a coupled condition arises, namely, reagents must diffuse to and products diffuse away from the electrode surface. Mechanical or hydrodynamic assistance to this mass-transfer condition is often provided, (e.g., in electrode-synthetic processes), but the requirement of diffusion or migration to or from the electrode still obtains. Even in charging the capacitance of the double layers at high-area electrodes, there is some reorganization of the distribution of cations and anions of the solution, especially in a two-electrode double-layer capacitor where ions of opposite charge must be differentially accumulated at the two respective electrode interfaces of each cell of the device. Hence there must be electrolytic and diffusional migration of ions during charging or discharging.

Keywords

Phase Angle Equivalent Circuit Electrochemical Behavior Porous Electrode Electrochemical Capacitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. N. Reilley, Rev. Pure Appl. Chem., 18, 137 (1968).Google Scholar
  2. 2.
    J. Newman, Electrochemical Systems, Prentice-Hall, Englewood Cliffs, N.J. (1972).Google Scholar
  3. 3.
    R. de Levie, Electrochim. Acta, 8, 751 (1963) (in 3 parts); also see A. Winsel, Zeit. Elektrochem., 66, 287 (1962).CrossRefGoogle Scholar
  4. 4.
    J. Crank, Mathematics of Diffusion, Clarendon Press, Oxford (1975).Google Scholar
  5. 5.
    J. Miller inProc. Second Intl. Seminar on Double-Layer Capacitors and Similar Energy Storage Devices, S. Wolsky and N. Marincic, eds., Florida Educational Seminars, Boca Raton, Fla (1992); also see Proc. Third Intl. Seminar(1993).Google Scholar
  6. 6.
    J. O’ M. Bockris and S. Srinivasan, Fuel-Cells, Their Electrochemistry, Chapter 5, McGraw Hill, New York (1969).Google Scholar
  7. 7.
    T. Pajkossey, J. Electroanal. Chem., 300, 1 (1991).CrossRefGoogle Scholar
  8. 8.
    W. H. Mulder, J. H. Sluyters, T. Pajkossey, and L. Nyikos, J. Electroanal. Chem., 285, 103 (1990).CrossRefGoogle Scholar
  9. 9.
    R. de Levie, Electrochim. Acta, 9, 1231 (1964) (part 4 of the series).CrossRefGoogle Scholar
  10. 10.
    J. S. Newman and C. W. Tobias, J. Electrochem. Soc., 109, 1183 (1962)CrossRefGoogle Scholar
  11. 10.
    U.K. Micka, Adv. Chem. Series, 47, 73 (1965).CrossRefGoogle Scholar
  12. 12.
    K. Micka and I. Rousar, Electrochim. Acta, 21, 599 (1976).CrossRefGoogle Scholar
  13. 13.
    K. Micka and I. Rousar, Coll. deck. Chem. Comm., 40, 921 (1975).CrossRefGoogle Scholar
  14. 14.
    S. Srinivasan and H. D. Hurwitz, Electrochim. Acta, 12, 495 (1967).CrossRefGoogle Scholar
  15. 15.
    H. Keiser, K. D. Beccu, and M. A. Gutjahr, Electrochim. Acta, 21, 539 (1976).CrossRefGoogle Scholar
  16. 16.
    E. J. W. Verwey and Th. G. Overbeeck, Theory of the Stability of Lyophopic Colloids, Elsevier (1948).Google Scholar
  17. 17.
    C. J. E. Farina and K. B. Oldham, J. Electroanal. Chem., 81, 21 (1977).CrossRefGoogle Scholar
  18. 18.
    A. T. Hubbard, J. Electroanal. Chem., 22, 165 (1969).CrossRefGoogle Scholar
  19. 19.
    A. T. Hubbard and F. C. Anson, J. Electroanal. Chem., 9, 163 (1965).Google Scholar
  20. 20.
    A. P. Brown, M. Fleischmann, and D. Pletcher, J. Electroanal. Chem., 50, 65 (1974).CrossRefGoogle Scholar
  21. 21.
    B. Sapoval, Solid State Ionics, 23, 253 (1987).CrossRefGoogle Scholar
  22. 22.
    H. Shi inProc. Fourth Intl. Seminar on Double-layer Capacitors and Related Devices, S. Wolsky and N. Marincic, eds., Florida Educational Seminars, Boca Raton, Fla (1994).Google Scholar
  23. 23.
    A. Soffer, D. Golub and Y. Oren, J. Electroanal. Chem., 260, 383 (1989).CrossRefGoogle Scholar
  24. 24.
    R. Kotz, M. Sullivan, M. Bärtsh, and D. Haas, inProc. Fourth Intl. Seminar on Double-layer Capacitors and Related Devices, S. Wolsky and N. Marincic, eds., Florida Educational Seminars, Boca Raton, Fla (1994).Google Scholar
  25. 25.
    F. W. Geurts and Z. Horovitz, in Proc. Fourth Intl. Seminar on Double-layer Capacitors and Related Devices, S. Wolsky and N. Marincic, eds., Florida Educational Seminars, Boca Raton, Fla (1994).Google Scholar
  26. 26.
    C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, inProc. Sixth Intl. Seminar on Double-layer Capacitors and Related Devices, S. Wolsky and N. Marincic, eds., Florida Educational Seminars, Boca Raton, Fla. (1996).Google Scholar
  27. 27.
    L. Bai and B. E. Conway, J. Chem. Soc, Faraday Trans., 89, 235, 243 (1993).CrossRefGoogle Scholar
  28. 28.
    For example, see A. W. Adamson, Physical Chemistry of Surfaces, 4th ed. pp. 200’203, Wiley, New York (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • B. E. Conway
    • 1
  1. 1.Fellow of the Royal Society of CanadaUniversity of OttawaOttawaCanada

Personalised recommendations