Sensory and Motor Components of Smooth Pursuit Eye Movements in Extrastriate Cortex

  • S. A. Brandt
  • T. Takahashi
  • J. B. Reppas
  • R. Wenzel
  • A. Villringer
  • A. M. Dale
  • R. B. H. Tootell


Ample evidence from monkey electrophysiology suggests that eye movements are controlled by two parallel cortico-cortical networks, including a frontal eye field (FEF) and a parietal eye field (PEF). Each cortical eye field contains largely separate groups of neurons devoted to either saccadic eye movements, or visual pursuit eye movements (Tian and Lynch 1996). Both eye fields are directly connected to the brain stem oculomotor system. The posterior eye movement network has strong [anatomical and functional] links to the visual “dorsal stream”, and especially to motion perception. Experimental studies in non-human primates suggest that areas MT/MST are intimately involved in pursuit tracking (Newsome et al. 1985; Dursteier et al. 1987). If a given motion is misperceived or not seen at all, the target cannot be pursued faithfully (Baloh et al. 1980). This implies that information about an ongoing eye movement must be incorporated at some level(s) of the visual motion processing hierarchy. Here we ask at a systems level how analoguous regions in human cortex are interrelated. Human neuroimaging studies have clarified the localization of saccade-related activity (for a review see Carter and Zee 1997). However, only few imaging studies have addressed the functional anatomy of smooth pursuit eye movement in extrastri-ate visual cortex (Petit and Clark 1997; Barton et al. 1996). Previous human brain imaging experiments have also examined cortical responses to stimulus motion (e.g. Watson et al. 1993; Dupont et al. 1994; Tootell et al. 1995b; Tootell et al. 1997). Less is known about how the actitvity in specific motion areas is related to different components of an ongoing pursuit eye movement.


Smooth Pursuit Dorsal Stream Motion Area Retinal Slip Cortical Surface Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen RA, Asanuma C, Essick G, Siegel RM (1990) Cortico-cortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J Comp Neurol 296: 65–113PubMedCrossRefGoogle Scholar
  2. Anderson TJ, Jenkins IH, Brooks DJ, Hawken MB, Frackowiak RS, Kennard C (1994) Cortical control of sac-cades and fixation in man. A PET study. Brain 117:1073–1084PubMedCrossRefGoogle Scholar
  3. Baizer JS, Ungerleider LG, Desimone R (1991) Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci 11:168–190PubMedGoogle Scholar
  4. Baloh RW, Yee RD, Honrubia V (1980) Optokinetic nystagmus and parietal lobe lesions. Ann Neurol 7: 269–276PubMedCrossRefGoogle Scholar
  5. Barash S, Bracewell RM, Fogassi L, Gnadt JW, Andersen RA (1991a) Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. J Neurophysiol 66: 1095–1108PubMedGoogle Scholar
  6. Barash S, Bracewell RM, Fogassi L, Gnadt JW, Andersen RA (1991b) Saccade-related activity in the lateral intraparietal area. II. Spatial properties. J Neurophysiol 66: 1109–1124PubMedGoogle Scholar
  7. Barton JJ, Simpson T, Kiriakopoulos E, Stewart C, Crawley A, Guthrie B, Wood M, Mikulis D (1996) Functional MRI of lateral occipitotemporal cortex during pursuit and motion perception. Ann Neurol 40: 387–398PubMedCrossRefGoogle Scholar
  8. Barnes GR, Asselman PT (1991) The mechanism of prediction in human smooth pursuit eye movements. J Physiol 439:439–61PubMedGoogle Scholar
  9. Blatt GJ, Andersen RA, Stoner GR (1990) Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J Comp Neurol 299: 421–445PubMedCrossRefGoogle Scholar
  10. Brandt SA, Reppas JB, Dale AM, Wenzel R, Savoy RL, Tootell RBH (1997) Simultaneous infra-red oculography and fMRI. Proc ISNMR Vancouver 3: 1978Google Scholar
  11. Carter N and Zee DS (1997) The anatomical localization of saccades using functional imaging studies and transcranial magnetic stimulation. Curr Opin Neurol 10: 10–7PubMedCrossRefGoogle Scholar
  12. Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cog Neurosci 5:162–176CrossRefGoogle Scholar
  13. DeYoe EA, Bandettini P, Neitz J, Miller D, Winans P (1994) Functional magnetic resonance imaging (FMRI) of the human brain. J Neurosci Methods 54: 171–187PubMedCrossRefGoogle Scholar
  14. Dupont P, Orban GA, De Bruyn B, Verbruggen A, Mortelmans L (1994) Many areas in the human brain respond to visual motion. J Neurophysiol 72: 1420–1424PubMedGoogle Scholar
  15. Dursteier MR, Wurtz RH, Newsome WT (1987) Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey. J Neurophysiol 57: 1262–1287Google Scholar
  16. Dursteler MR, Wurtz RH (1988) Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST. J Neurophysiol 60: 940–965PubMedGoogle Scholar
  17. Elkington PT, Kerr GK, Stein JS (1992) The effect of electromagnetic stimulation of the posterior parietal cortex on eye movements. Eye 6: 510–514PubMedCrossRefGoogle Scholar
  18. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1: 1–47PubMedCrossRefGoogle Scholar
  19. Friston KJ, Frith CD, Dolan RJ, Liddle PF, Frackowiak RS (1993) Functional connectivity: the principal components analysis of large PET data findings. J Cereb Blood Flow Metab 13: 5–14PubMedCrossRefGoogle Scholar
  20. Fox PT, Fox JM, Raichle ME (1985) The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study. J Neurophysiol 54: 348–369PubMedGoogle Scholar
  21. Galletti C, Battaglini PP (1989) Gaze-dependent neurons in area V3A of monkey prestriate cortex. J Neurosci 9: 1112–1125PubMedGoogle Scholar
  22. Grüsser OJ, Landis T (1991) Visual movement agnosias, or motion blindness: A rare clinical syndrom. In: Griisser OJ and Landis T (eds) Visual agnosias and other disturbances of visual perception and cognition. The Macmillan Press, London, pp 359–384Google Scholar
  23. Komatsu H, Wurtz RH (1988a) Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. J Neurophysiol 60: 580–603PubMedGoogle Scholar
  24. Komatsu H, Wurtz RH (1988b) Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. J Neurophysiol 60: 621–644PubMedGoogle Scholar
  25. Komatsu H, Wurtz RH (1989) Modulation of pursuit eye movements by stimulation of cortical areas MT and MST. J Neurophysiol 62: 31–47PubMedGoogle Scholar
  26. Newsome WT, Wurtz RH, Dursteler MR, Mikami A (1985) Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J Neurosci 5: 825–840PubMedGoogle Scholar
  27. Newsome WT, Wurtz RH, Komatsu H (1988) Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. J Neurophysiol 60: 604–620PubMedGoogle Scholar
  28. Oyachi H, Ohtsuka K (1995) Transcranial magnetic stimulation of the posterior parietal cortex degrades accuracy of memory-guided saccades in human, invest Ophthalmol Vis Sei 36: 1441–1449Google Scholar
  29. Paus T, Petrides M, Evans AC, Meyer E (1993) Role of the human anterior cingulate cortex in the control of oculomotor, manual and speech responses: a positron emmision tomography study. J Neurophysiol 70: 453–469PubMedGoogle Scholar
  30. Petit L, Orssaud C, Tzourio N, Salamon G, Mazoyer B, Berthoz A (1993) PET study of voluntary saccadic eye movements in humans: basal ganglia-thalamocortical system and cingulate cortex involvement. J Neurophysiol 69: 1009–1017PubMedGoogle Scholar
  31. Petit L, Clark VP, Ingeholm J, Haxby JV (1997) Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI. J Neurophysiol 77: 3386–3390PubMedGoogle Scholar
  32. Pierrot-Deseilligny C, Rivaud S, Gaymard B, Agid Y (1991) Cortical control of reflexive visually-guided sac-cades. Brain 114: 1473–1485PubMedCrossRefGoogle Scholar
  33. Saito H, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci 6: 145–157PubMedGoogle Scholar
  34. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268: 889–893PubMedCrossRefGoogle Scholar
  35. Sharpe JA, Morrow MJ (1991) Cerebral hemispheric smooth pursuit disorders. Acta Neurol Belg 91: 81–96PubMedGoogle Scholar
  36. Tian JR, Lynch JC (1996) Functionally defined smooth and saccadic eye movement subregions in the frontal eye field of Cebus monkeys. J Neurophysiol 76: 2740–2753PubMedGoogle Scholar
  37. Tootell RB, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Brady TJ, Rosen BR (1995a) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375: 139–141PubMedCrossRefGoogle Scholar
  38. Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995b) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15: 3215–3230PubMedGoogle Scholar
  39. Tootell RB, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17: 7060–7078PubMedGoogle Scholar
  40. Watson JD, Myers R, Frackowiak RS, Hajnal JV, Woods RP, Mazziotta JC, Shipp S, Zeki S (1993) Area V5 of the human brain: evidence from a combined study using positron emission tomograpy and magnetic resonance imaging. Cereb Cortex 3: 79–94PubMedCrossRefGoogle Scholar
  41. Young MP (1992) Objective analysis of the topological organization of the primate cortical visual system. Nature 358: 152–155PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • S. A. Brandt
    • 1
  • T. Takahashi
    • 2
  • J. B. Reppas
    • 2
  • R. Wenzel
    • 1
  • A. Villringer
    • 1
  • A. M. Dale
    • 2
  • R. B. H. Tootell
    • 2
  1. 1.Department of Neurology, CharitéBerlinGermany
  2. 2.Massachusetts General HospitalNMR-CenterCharlestownUSA

Personalised recommendations