Advertisement

Updating the Location of Visual Objects in Space Following Vestibular Stimulation

  • G. Nasios
  • A. Rumberger
  • C. Maurer
  • T. Mergner
Chapter

Abstract

When updating the location of a visual object in space while moving around, we have to rely on sensory information from different modalities. Retinal signals provide us with a notion of the object’s position on the retina, but we also have to take into account eye position in the head and head position in space. In other words, we perform a coordinate transformation from a retinotopic reference frame via a craniotopic to a spatiotopic reference frame (e.g. Andersen et al. 1993). Human psychophysical studies indicate that these transformations show specific errors under certain conditions, from which we may learn how the brain performs these complex neuronal computations.

Keywords

Target Location Visual Object Viewing Condition Body Rotation Vestibular Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen RA, Snyder LH, Li CS, Stricanne B (1993) Coordinate transformations in the representation of spatial information. CurrOpin Neurobiol 3: 171–6CrossRefGoogle Scholar
  2. Bloomberg J, Melvill Jones G, Segal B, McFarlane S, Soul J (1988) Vestibular-contingent voluntary saccades based on cognitive estimates of remembered vestibular information. Adv Oto-Rhino-Laryngology 41: 71–75Google Scholar
  3. Blouin J, Gauthier GM, van Donkelaar P, Vercher JL (1995a) Encoding the position of a flashed visual target after passive body rotations. Neuroreport 6: 1165–1168PubMedCrossRefGoogle Scholar
  4. Blouin J, Gauthier GM, Vercher JL (1995b) Failure to update the egocentric representation of the visual space through labyrinthine signal. Brain & Cognition 29: 1–22CrossRefGoogle Scholar
  5. Blouin J, Gauthier GM, Vercher JL (1997) Visual object localization through vestibular and neck inputs. 2: Updating off-mid-sagittal-plane target positions. J Vestib Res 7: 137–43PubMedCrossRefGoogle Scholar
  6. Bock O (1986) Contribution of retinal versus extraretinal signals towards visual localization in goal-directed movements. Exp Brain Res 64: 467–481CrossRefGoogle Scholar
  7. Bock O (1993) Localization of objects in the peripheral visual field. Behav Brain Res 56: 77–84PubMedCrossRefGoogle Scholar
  8. Fernandez C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neuro-physiol 34: 661–75Google Scholar
  9. Israel I, Berthoz A (1989) Contribution of the otoliths to the calculation of linear displacement. J Neurophysiol 62: 247–263PubMedGoogle Scholar
  10. Maurer C, Kimmig H, Trefzer A, Mergner T. Visual object localization through vestibular and neck inputs. I. Localization with respect to space and relative to the head and trunk mid-saggital planes. J Vest Research 7:113–135,1997.Google Scholar
  11. Mergner T, Hlavacka F, Schweigart G (1993) Interaction of vestibular and proprioceptive inputs for human self-motion perception. J Vest Res, 3: 41–57Google Scholar
  12. Mergner T, Huber W, Becker W (1997) Vestibular-neck interaction and transformation of sensory coordinates. J Vestib Res 7: 347–367PubMedCrossRefGoogle Scholar
  13. Mergner T, Nasios G, Anastasopoulos D (1998) Vestibular memory-contingent saccades involve somatosensory input from the body support. NeuroReport 9: 1469–1473PubMedCrossRefGoogle Scholar
  14. Mergner T, Siebold C, Schweigart G, Becker W (1991) Human perception of horizontal trunk and head rotation in space during vestibular and neck stimulation. Exp Brain Res, 85: 389–404PubMedCrossRefGoogle Scholar
  15. Mergner T, Rottler G, Kimmig H, Becker W (1992) Role of vestibular and neck inputs for the perception of object motion in space. Exp Brain Res 89: 655–668PubMedCrossRefGoogle Scholar
  16. Nakamura T, Bronstein AM (1995) The perception of head and neck angular displacement in normal and labyrinthine-defective subjects. A quantitative study using a ‘remembered saccade’ technique. Brain 118: 1157–1168PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • G. Nasios
    • 1
    • 2
  • A. Rumberger
    • 1
    • 2
  • C. Maurer
    • 1
    • 2
  • T. Mergner
    • 1
    • 2
  1. 1.Neurological ClinicIoannina UniversityIoanninaGreece
  2. 2.Neurologische KlinikUniversität FreiburgFreiburgGermany

Personalised recommendations