Neuronal Activity in Monkey Superior Colliculus during an Antisaccade Task

  • Stefan Everling
  • Michael C. Dorris
  • Douglas P. Munoz


It well known that the primate superior colliculus (SC) is involved in the generation of visually guided saccadic eye movements (for review see Sparks and Hartwich-Young 1989). Its intermediate layers contain neurons which display motor bursts for saccades within the response field of the neuron. These neurons project directly to preoculomo-toneurons in paramedian pontine reticular formation and the rostral interstitial nucleus of the medial longitudinal fasciculus, which provide the input to the extraocular muscle motoneurons (for review see Moschovakis et al. 1996).


Superior Colliculus Antisaccade Task Burst Neuron Medial Longitudinal Fasciculus Visual Neuron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen RA, Snyder LH, Bradley DC, Hing J (1989) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Ann Rev Neurosci 20: 303–330CrossRefGoogle Scholar
  2. Christ CF, Yamasaki DSG, Komatsu H, Wurtz RH (1988) A grid system and microsyringe for single cell recordings. J Neurosci Methods 26: 117–122CrossRefGoogle Scholar
  3. Dorris MC, Paré M, Munoz DP (1997) Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. J Neurosci 17: 8566–8579PubMedGoogle Scholar
  4. Everling S, Fischer B (1998) The antisaccade: A review of basic research and clinical studies. Neuropsychologia (In Press)Google Scholar
  5. Everling S, Spantekow A, Krappmann P, Flohr H (1998) Event-related potentials associated with correct and incorrect responses in a cued gap antisaccade task. Exp Brain Res 118: 27–34PubMedCrossRefGoogle Scholar
  6. Fuchs AF, Robinson DA (1966) A method for measuring horizontal and vertical eye movements chronically in the monkey. J Appl Physiol 21: 1068–1070PubMedGoogle Scholar
  7. Gottlieb J, Goldberg ME (1997) Encoding of stimulus and saccade direction in rhesus monkey lateral intraparietal area (LIP). Soc Neurosci Abstr 23: 14.9Google Scholar
  8. Guitton D, Buchtel HA, Douglas RM (1985) Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp Brain Res 58: 455–472PubMedCrossRefGoogle Scholar
  9. Hallett PE (1978) Primary and secondary saccades to goals defined by instructions. Vision Res 18: 1279–1296PubMedCrossRefGoogle Scholar
  10. Hallett PE, Adams BD (1980) The predictability of saccadic latencies in a novel voluntary oculomotor task. Vision Res 20: 329–339PubMedCrossRefGoogle Scholar
  11. Hays AV, Richmond BJ, Optican LM (1982) A UNIX-based multiple process system for real-time data acquisition and control, W ESCON Conf. Proc. 2: 1–10Google Scholar
  12. Hikosaka O, Wurtz RH (1985) Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. J Neurophysiol 53: 266–291PubMedGoogle Scholar
  13. Lee C, Rohrer W, Sparks DL (1988) Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332: 357–360PubMedCrossRefGoogle Scholar
  14. Munoz DP, Wurtz RH (1995) Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. J Neurophysiol 73: 2313–2333PubMedGoogle Scholar
  15. Moschovakis AK, Scudder CA, Highstein SM (1996) The microscopic anatomy and physiology of the mammalian saccadic system. Proc Neurobiol 50: 133–254CrossRefGoogle Scholar
  16. Pierrot-Descilligny CP, Rivaud S, Gaymard B, Agid Y (1991) Cortical control of reflexive visually-guided sac-cades. Brain 114: 1472–1485Google Scholar
  17. Schiller PH, Sandel JH, Maunsell JHR (1987) The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. J Neurophysiol 57: 1033–1049PubMedGoogle Scholar
  18. Schlag-Rey M, Amador N, Sanchez H, Schlag J(1997) Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature 390: 398–401PubMedCrossRefGoogle Scholar
  19. Sparks DL, Hartwich-Young R (1989) The deep layers of the superior colliculus. In Wurtz RH, Goldberg ME (eds.) The neurobiology of saccadic eye movements. Amsterdam, Elsevier.Google Scholar
  20. Waitzman DM, Ma TP, Optican LM, Wurtz RH (1991) Superior colliculus neurons mediate the dynamic characteristics of saccades. J Neurophysiol 66: 1716–1737PubMedGoogle Scholar
  21. Wurtz, RH, Goldberg ME (1972) Activity of superior colliculus neurons in behaving monkey, IV. Effects of lesions on eye movements. J Neurophysiol 35: 575–586PubMedGoogle Scholar
  22. Wurtz RH, Goldberg ME (1989) The neurobiology of saccadic eye movements. Amsterdam, Elsevier.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Stefan Everling
    • 1
  • Michael C. Dorris
    • 1
  • Douglas P. Munoz
    • 1
  1. 1.MRC Group in Sensory-Motor Neuroscience Department of PhysiologyQueen’s UniversityKingstonCanada

Personalised recommendations