Advertisement

Endothelial Cell Injury

  • Talia Barzel Spanier
  • Ann Marie Schmidt
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

In conventional cardiac surgery, use of cardiopulmonary bypass (CPB) initiates a series of events best-characterized as a “whole body inflammatory response,” with activation of coagulation, fibrinolysis, and inflammatory cascades (1–3). Perturbation and activation of the endothelium are central in this response (4–6). However, with the emergence of minimally invasive techniques that allow coronary artery bypass grafts to be performed on a beating heart without CPB, it is likely that diminished acute systemic endothelial activation will result.

Keywords

Endothelial Cell Injury Invasive Cardiac Surgery Vasomotor Dysfunction Fibroproliferative Response Invasive Coronary Artery Bypass Grafting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Colman RW. Hemostatic complications of cardiopulmonary bypass. Am J Hematol 1995; 48: 267–272.PubMedCrossRefGoogle Scholar
  2. 2.
    Edmunds HL. Why cardiopulmonary bypass makes patients sick: strategies to control the blood synthetic surface interaction. Adv Cardiac Surg 1996; 6: 131–167.Google Scholar
  3. 3.
    Boyle EM Jr, Pohlman TH, Johnson MC, Verrier ED. The systemic inflammatory response. Ann Thorac Surg 1997; 64: S31 - S37.CrossRefGoogle Scholar
  4. 4.
    Verrier ED, Boyle EM Jr. Endothelial injury in cardiovascular surgery: an overview. Ann Thorac Surg 1997; 64: S2 - S8.CrossRefGoogle Scholar
  5. 5.
    Davies MG, Hagen PO. The vascular endothelium: a new horizon. Ann Surg 1993; 218: 593–609.PubMedCrossRefGoogle Scholar
  6. 6.
    Vane JR, Anggard EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med 1990; 323: 27–36.PubMedCrossRefGoogle Scholar
  7. 7.
    Ross R. Cell biology of atherosclerosis. Annu Rev Physiol 1995; 57: 791–804.PubMedCrossRefGoogle Scholar
  8. 8.
    Luscher TF. Vascular biology of coronary artery bypass grafts. Coronary Artery Dis 1992; 3: 157–65.CrossRefGoogle Scholar
  9. 9.
    Harlan J. Leukocyte-endothelial interactions. Blood 1985: 65: 513–525.PubMedGoogle Scholar
  10. 10.
    Pober JS, Cotran RS. Cytokines and endothelial cell biology. Physiol Rev 1990; 70: 427–451.PubMedGoogle Scholar
  11. 11.
    Bevilacqua MP, Pober JS, Wheeler ME, Cotran RS, Gimbrone MA Jr. Interleukin-1 activation of vascular endothelium: effects on procoagulant activity and leukocyte adhesion. Am J Pathol 1985; 121: 394–403.PubMedGoogle Scholar
  12. 12.
    Bevilacqua MP, Pober JS, Majeau GR, Fiers W, Cotran RS, Gimbrone MA Jr. Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparisons with the actions of interleukin 1. Proc Natl Acad Sci USA 1986; 83: 4533–4537.PubMedCrossRefGoogle Scholar
  13. 13.
    Kourembanas S, Marsden PA, McQuillan LP, Faller DV. Hypoxia induces endothelial cell gene expression and secretion in cultured human endothelium. J Clin Invest 1991; 88: 1054–1057.PubMedCrossRefGoogle Scholar
  14. 14.
    Selke FW, Boyle EM Jr, Verrier ED. The pathophysiology of vasomotor dysfunction. Ann Thorac Surg 1997; 64: S9 - S15.CrossRefGoogle Scholar
  15. 15.
    Billar TR. Nitric oxide: novel biology with clinical relevance. Ann Surg 1995; 221: 339–349.CrossRefGoogle Scholar
  16. 16.
    Luscher TF, Tanner FC, Tschundi MR, Noll G. Endothelial dysfunction in coronary artery disease. Annu Rev Med 1993; 44: 395–418.PubMedCrossRefGoogle Scholar
  17. 17.
    Boyle EM Jr, Pohlman TH, Cornejo CJ, Verner ED. Ischemia-reperfusion injury. Ann Thorac Surg 1997; 64: S24 - S30.CrossRefGoogle Scholar
  18. 18.
    Kubes P, Suzuki M, Granger DN. Nitric oxide, and endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991; 88: 4651–4655.PubMedCrossRefGoogle Scholar
  19. 19.
    Davie EW, Fumikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 1991;30:10, 363–10, 370.Google Scholar
  20. 20.
    Stern DM, Espisito C, Gerlach H, et al. Endothelium and regulation of coagulation. Diabetes Care 1991; 14: 160–166.PubMedCrossRefGoogle Scholar
  21. 21.
    Boyle EM Jr, Verrier ED, Spiess BD. The procoagulant response to injury. Ann Thorac Surg 1997; 64:S 16 - S23.CrossRefGoogle Scholar
  22. 22.
    Esmon CT. The role of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem 1989; 264: 4743–4746.PubMedGoogle Scholar
  23. 23.
    Esmon NL. Thrombomodulin. Prog Hemost Thromb 1989; 9: 29–55.PubMedGoogle Scholar
  24. 24.
    Sakata Y, Curriden S, Lawrence D, et al. Activated protein C stimulates fibrinolytic activity of cultured endothelial cells and decreases antiactivator activity. Proc Natl Acad Sci USA 1985; 82: 1121–1125.PubMedCrossRefGoogle Scholar
  25. 25.
    Lucore C. Regulation of fibrinolysis by vascular endothelium. Coronary Artery Dis 1991; 2: 157–166.CrossRefGoogle Scholar
  26. 26.
    Emeis JJ, Kooistra T. Interleukin-1 and lipopolysaccharide induces and inhibitor of tissue type plasminogen activator in vivo and in cultured endothelial cells. J Exp Med 1986; 163: 1260–1266.PubMedCrossRefGoogle Scholar
  27. 27.
    Nachman RL, Hajjar KA, Silverstein RL, Dinarello CA. Interleukin 1 induces endothelial synthesis of plasminogen activator inhibitor. J Exp Med 1988; 163: 1595–1600.CrossRefGoogle Scholar
  28. 28.
    Hanss M, Collen D. Secretion of tissue type plasminogen activator and plasminogen activator inhibitor by cultured human endothelial cells: modulation by thrombin, endotoxin, and histamine. J Lab Clin Med 1987; 109: 97–104.PubMedGoogle Scholar
  29. 29.
    Tanaka K, Takao M, Yaka I, et al. Alterations in coagulation and fibrinolysis associated with cardiopulmonary bypass during open heart surgery. J Cardiothorac Anesth 1989; 3: 181–188.PubMedCrossRefGoogle Scholar
  30. 30.
    Chandler WL, Fitch JC, Wall MH, et al. Individual variations in the fibrinolytic response during and after cardiopulmonary bypass. Thromb Hemost 1995; 74: 1293–1297.Google Scholar
  31. 31.
    Santos MT, Valles J, Marcu-AJ, et al. Enhancement of platelet reactivity and modulation of eicosanoid production by intact erythrocytes. J Clin Invest 1991; 87: 571–580.PubMedCrossRefGoogle Scholar
  32. 32.
    Rinder CS, Bohnert J, Rinder HM, et al. Platelet activation and aggregation during cardiopulmonary bypass. Anesthesiology 1991; 75: 388–393.PubMedCrossRefGoogle Scholar
  33. 33.
    Weyrich AS, Ma XY, Lefer DJ et al. In vivo neutralization of p-selectin protects feline hearts and endothelium in myocardial ischemia and reperfusion injury. J Clin Invest 1993; 991: 2620–2629.CrossRefGoogle Scholar
  34. 34.
    McEver RP, Beckstead JH, Moore KL, et al. GMP 140, a platelet alpha granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Wiebel Palade bodies. J Clin Invest 1989; 84: 92–99.PubMedCrossRefGoogle Scholar
  35. 35.
    Marzocchi A, Piovaccari G, Marrozzini C, Ortolanii P, Palmerini T, Branzi A, Magnani B. Results of coronary stenting for unstable vs. stable angina pectoris. Am J Cardiol 1997; 79: 1314–1318.PubMedCrossRefGoogle Scholar
  36. 36.
    Chambers CE, Kozak M, Ettinger SM, Gilchrist IC. Interventional cardiology: present and future. J Cardiothorac Vasc Anesth 1997; 11 (2): 211–219.PubMedCrossRefGoogle Scholar
  37. 37.
    Van der Giessen WJ, Serruys PW, Visser WJ, et al. Endothelialization of intravascular stents. J Int Cardiol 1988; 1: 109–120.CrossRefGoogle Scholar
  38. 38.
    Zubaid M, Penn IM, Buller CE, Moscovich MD, Ricci DR, Chauhan A. Antiplatelet therapy alone is safe and effective after coronary stenting: observations of a transition in practice. Can J Cardiol 1997; 13 (4): 335–340.PubMedGoogle Scholar
  39. 39.
    Berger PB, Holmes DR Jr, Ohman EM, et al. Restenosis, reocclusion and adverse cardiovascular events after successful balloon angioplasty of occluded versus non occluded coronary arteries: results from the multicenter American research trial with cilazapril after angioplasty to prevent transluminal coronary obstruction and restenosis (MARCATOR). J Am Coll Cardiol 1996; 27: 1–7.PubMedCrossRefGoogle Scholar
  40. 40.
    The RESTORE Investigators. Effects of platelet glycoprotein IIb/IIIa blockade with Tirofiban on adverse cardiac events in patients with unstable angina or acute myocardial infarction undergoing coronary angioplasty. Circulation 1997; 96: 1445–1453.Google Scholar
  41. 41.
    Kleiman NS. Primary and secondary safety endpoints from IMPACT II. Am J Cardiol 1997; 80 (4A): 29B - 33B.PubMedCrossRefGoogle Scholar
  42. 42.
    Schror K. Antiplatelet drugs. Drugs 1995; 50: 7–28.PubMedCrossRefGoogle Scholar
  43. 43.
    Hobson AG, Sowinski KM. Ticlodipine and aspirin following implantation of coronary stents. Ann Pharmacol 1997; 31: 770–772.Google Scholar
  44. 44.
    Coller BS. Platelets and thrombolytic therapy. N Engl J Med 1990; 322: 33–42.PubMedCrossRefGoogle Scholar
  45. 45.
    Lefkovits J, Plow EF, Topol EJ. Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N Engl J Med 1995; 332: 1553–1559.PubMedCrossRefGoogle Scholar
  46. 46.
    Simons M, Leclerc G, Safian RD, et al. Relation between activated smooth muscle cells in coronary artery lesions and restenosis after atherectomy. N Engl J Med 1993; 328: 608–613.PubMedCrossRefGoogle Scholar
  47. 47.
    Raines EW, Dover SK, Ross R. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science 1989; 243: 393–396.PubMedCrossRefGoogle Scholar
  48. 48.
    Allaire E, Clowes AW. The intimal hyperplastic response. Ann Thorac Surg 1997; 64: S38–S46.CrossRefGoogle Scholar
  49. 49.
    Schwartz SM, deBlois D, Obrian ER. The intima: soil for atherosclerosis and restenosis. Circ Res 1995; 77: 445–465.PubMedCrossRefGoogle Scholar
  50. 50.
    Gay CG, Winkles JA. Interleukin-1 regulates heparin-binding growth factor 2 gene expression in vascular smooth muscle cells. Proc Natl Acad Sci USA 1991; 88: 296–300.PubMedCrossRefGoogle Scholar
  51. 51.
    Clowes AW. Prevention and management of recurrent disease after arterial reconstruction: new prospects of pharmacologic control. Thromb Hemost 1991; 66: 2–66.Google Scholar
  52. 52.
    Unterburg C, Sandrock D, Nebendahl K, Buchwald AB. Reduced acute thrombus formation results in decreased neointimal proliferation after coronary angioplasty. J Am Coll Cardiol 1995; 26: 1747–1754.CrossRefGoogle Scholar
  53. 53.
    Boyle EM, Lille ST, Allaire E, Clowes AW, Verrier ED. Atherosclerosis. Ann Thorac Surg 1997; 64: S47–S56.CrossRefGoogle Scholar
  54. 54.
    Cybulsky MI, Gimbrone MA Jr. Endothelial cell expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 1991; 251: 788–791.PubMedCrossRefGoogle Scholar
  55. 55.
    Galis ZS, Sukhova GK, Kranzhofer R, et al. Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci USA 1994; 94: 402–406.Google Scholar
  56. 56.
    Velican D, Velican C. Intimai thickening in developing coronary arteries and its relevance to atherosclerotic involvement. Atherosclerosis 1976; 23: 345–355.CrossRefGoogle Scholar
  57. 57.
    Corson MA, Berk BC. Growth factors and the vessel wall. Heart Dis Stroke 1993; 2 (2): 166–170.PubMedGoogle Scholar
  58. 58.
    Ross R. The pathogenesis of atherosclerosis—an update. N Engl J Med 1986; 314: 488–500.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Talia Barzel Spanier
  • Ann Marie Schmidt

There are no affiliations available

Personalised recommendations