Skip to main content

Alternative Approaches to Vascular Anastomosis Surgery

  • Chapter
Book cover Minimally Invasive Cardiac Surgery

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 106 Accesses

Abstract

Irrespective of vessel size or specific technique, manual suturing remains the golden standard for the creation of vascular anastomosis. Successful creation of anastomosis, particularly in small vessels, requires a high level of skill, a long learning curve and a substantial amount of time. In addition, the insertion of transmural stitches, even by experienced hands using atraumatic techniques and fine sutures, causes significant damage to the vessel wall (1,2). Suture placement results in exposure of the subendothelial matrix to the blood stream, setting up a nidus for thrombus formation. The same process occurs at the site of the anastomosis in the case of an end-to-end apposition. These thrombotic processes can potentially result in anastomotic obstruction, especially in small vessels. Because of these limitations, a continuous search for alternative methods to anastomose vessels has been at the forefront of vascular surgery and industry alike. The introduction of loupe and microscopic magnification and the development of microsurgical instruments and techniques (3), however, have improved patency rates of small vessel anastomoses. These progresses in surgery have enabled revascularization procedures of the brain and distal limbs, free tissue transfer, replantation of digits, and coronary bypass surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ramos JR, Berger K, Mansfield PB, et al. Histologic fate and endothelial changes of distended and non-distended vein grafts. Ann Surg 1976; 183: 205–228.

    Article  PubMed  CAS  Google Scholar 

  2. Zhong-Wei C, Dong-Yue Y, Di-Sheng C, eds. Microsurgery. New York: Springer Verlag, New York, 1982, p. 72.

    Google Scholar 

  3. Jacobson JH, Suarez EL. Microsurgery in the anastomosis of small vessels. Surg Forum 1960; 11: 243, 244.

    Google Scholar 

  4. Murphy JB. Resection of arteries and vein injured in continuity: end-to-end suture: experimental and clinical research. Med Rec 1897; 51: 73.

    Google Scholar 

  5. Lauritzen C. A new easier way to anastomose microvessels. Scan J Plast Reconstr Surg 1978; 12: 291–294.

    Article  CAS  Google Scholar 

  6. Zhang L, Moskovitz M, Baron DA, Siebert JW. Different types of sleeve anastomosis. J Reconstr Microsurg 1995; 11: 461–465.

    Article  PubMed  CAS  Google Scholar 

  7. Borst C, Janssen EWL, Tulleken CA, et al. Coronary artery bypass grafting without cardiopulmonary bypass and without interruption of native coronary flow using a novel anastomosis site restraining device. Surgery 1996; 27: 1356–1364.

    CAS  Google Scholar 

  8. Borst C, Santamore WP, Smedira NG, Bredee H. Minimally invasive coronary artery bypass grafting: on the beating heart and via limited access. Ann Thorac Surg 1997; (Suppl 6)63:S1—S5.

    Google Scholar 

  9. Hütl H. Surgical stitching instrument for the suture of the stomach and intestines according to Victor Fischer. Budapest, 1911.

    Google Scholar 

  10. Steichen FM, Ravitch MM. History of mechanical devices and instruments for suturing. In: Ravitch MM, Steichen FM, Austen WG, Scott HW Jr, Fonkalsrud EW, Polk HC, eds. Current Problems in Surgery Vol. 3. Yearbook Medical, Chicago and London; 1982, pp. 3: 3–51.

    Google Scholar 

  11. von Brucke H. Uber ein neuartiges chirurgisches Nahininstrument. Zentralbl Chir 1935; 62: 1684.

    Google Scholar 

  12. Rygg IH, Westengaard E, Fredricksen T. A new method for fixation of prosthetic cardiac valves and closure of the atriotomy with staples. J Cardiovasc Surg 1963; 4: 467.

    CAS  Google Scholar 

  13. Bertelsen S, Rygg IH. A simple stapling device for vascular surgery. Surg Gyn Obstet 1967; 125: 1087–1090.

    CAS  Google Scholar 

  14. Androsov PI. New method of surgical treatment of blood vessel lesions. AMA Arch Surg 1956; 73: 902.

    Article  PubMed  CAS  Google Scholar 

  15. Oka N, Yamada T, Ikeda T, Furuyama M, Shiramizu T, Kusaba A. Construction of internal arteriovenous fistulas for hemodialysis using Inokuchi’s vascular stapler. Jpn J Surg 1982; 12: 262–265.

    Article  PubMed  CAS  Google Scholar 

  16. Inokuchi K. Stapling device for end-to-side anastomosis of blood vessels. Arch Surg 1961; 82: 337–341.

    Article  PubMed  CAS  Google Scholar 

  17. Barak JH. Patent filed February 15, 1990, date of publication August 29, 1990. European patent #Ep 0 384 647 Al.

    Google Scholar 

  18. Kirsch WM, Zhu YH, Hardesty RA, Chapolini R. A new method for microvascular anastomosis. Am Surg 1992; 58: 722–727.

    PubMed  CAS  Google Scholar 

  19. Boeckx W, Darius O, van der Hof B, van Holder C. Scanning electron microscopic analysis of the stapled microvascular anastomosis in the rabbit. Ann Thorac Surg 1997; (Suppl 6)63:S128–S134.

    Google Scholar 

  20. Nataf P, Kirsch W, Hill AC, et al. Non-penetrating clips for coronary anastomosis. Ann Thorac Surg 1997;(Suppl 6)63:S135–S137.

    Google Scholar 

  21. Carrel A. La technique operatoire des anastomoses vasculaires et la transplantation des visceres. Lyon Med 1902; 98: 859.

    Google Scholar 

  22. Nitze M. Kongress in Moskau. Centralbl Chir 1897; 24: 1042.

    Google Scholar 

  23. Tuffier M. De l’untubation dans les plaies des gross artères. Bull Acad Natl Med (Paris) 1915; 74: 455.

    Google Scholar 

  24. Carrel A. Results of the transplantation of blood vessels, organs and limbs. JAMA 1908; 51: 1662.

    Article  Google Scholar 

  25. Muir ES. A new device for anastomosing blood vessels. Lancet 1914; 34: 211.

    Google Scholar 

  26. Payr E. Beitrage zur Technique der Blutgefass und Nrevennaht nebst Mittheilungen uber die Verwendung eines resorbirbaren Metalles in de Chirurgie. Arch Klin Chir 1900; 62: 67–93.

    Google Scholar 

  27. Carter EL, Roth EJ. Direct non-suture coronary anastomoses in the dog. Ann Surg 1958; 148: 212–218.

    Article  PubMed  CAS  Google Scholar 

  28. Rohman M, Goetz RH, Dee R. Double coronary artery internal mammary artery anastomoses: tantalum ring technique. Surg Forum 1969; 11: 236, 237.

    Google Scholar 

  29. Ratan RS, Leon M, Lovette JB, Levowitz BS, Magovern GJ, Kent EM. Modified non-suture anastomosis of coronary artery and internal mammary artery in dogs. Surg Forum 1960; 11: 239–241.

    PubMed  CAS  Google Scholar 

  30. Haller JD, Kripke DC, Rosenak SS, Roberts DR, Rohman M. Long-term results of small vessel anastomoses with a ring technique. Ann Surg 1965; 161: 67–72.

    Article  PubMed  CAS  Google Scholar 

  31. Payr E. Zur Frage der circularen Vereinigung von Blutgefasse mit resorbirbaren Prothesen. Arch Klin Chir 1904; 72: 32–54.

    Google Scholar 

  32. Landon LH. A simplified method of direct blood transfusion with self retaining tubes. JAMA 1913; 61: 490.

    Article  Google Scholar 

  33. Smith S. The soluble rod as an aid to vascular anastomosis. Arch Surg 1940; 41: 1004–1007.

    Article  Google Scholar 

  34. Donetski DA. A new method of a circular vascular suture. Eksperimetn Al’naia Khirurgiia (Moscow) 1956; 1: 53–59.

    Google Scholar 

  35. Tibbs GJ, Leslie WG. Arterial replacement with minimal interruption of the blood flow. Lancet 1958; 1: 292–294.

    Article  PubMed  CAS  Google Scholar 

  36. Holt GP, Lewis FJ. A new technique for end-to-end anastomosis of small arteries. Surg Forum 1960; 11: 242–243.

    PubMed  CAS  Google Scholar 

  37. Nakayama K, Tamiya T, Yamamoto K, Akimoto S. A simple new aparatus for small vessel anastomosis. Surgery 1962; 52: 918–923.

    PubMed  CAS  Google Scholar 

  38. Östrup LT. Anastomosis of small veins with suture or Nakayama’s apparatus. Scand J Plast Reconstr Surg 1976; 10: 9–17.

    PubMed  Google Scholar 

  39. Yamagata S, Handa H, Taki W, Yonekawa Y, Ikada Y, Iwata H. Experimental nonsuture microvascular anastomosis using a soluble PVA tube and plastic adhesive. J Microsurg 1979; 1: 208–215.

    Article  PubMed  CAS  Google Scholar 

  40. Daniel RK, Olding M. An absorbable anastomotic device for microvascular surgery: clinical applications. Plast Reconstr Surg 1984; 74: 337–342.

    Article  PubMed  CAS  Google Scholar 

  41. Moskovitz MJ, Bass L, Zhang L, Siebert JW. Microvascular anastomoses utilizing new intravascular stents. Ann Plast Surg 1994; 32: 612–618.

    Article  PubMed  CAS  Google Scholar 

  42. Östrup LT, Berggren A. The Unilink instrument system for fast and safe microvascular anastomosis. Ann Plast Surg 1986; 17: 521–525.

    Article  PubMed  Google Scholar 

  43. Berggren A, Ostrup LT, Ragnarsson R. Clinical experience with the Unilink/3M precise anastomotic device. Scan J Plast Reconstr Hand Surg 1993; 27: 35–39.

    Article  CAS  Google Scholar 

  44. Ragnarsson R, Berggren A, Ostrup LT. Microvenous end-to-side anastomosis: an experimental study comparing the Unilink system and sutures. J Reconstr Microsurg 1989; 5: 217–224.

    Article  PubMed  CAS  Google Scholar 

  45. Ragnarsson R, Berggren A, Ostrup LT, Gilbert RW. Arterial end-to-side anastomosis with the Unilink system. Ann Plast Surg 1989; 22: 405–415.

    Article  PubMed  CAS  Google Scholar 

  46. Lerner R, Binur NS. Current status of surgical adhesives. J Surg Res 1990; 48: 165–181.

    Article  PubMed  CAS  Google Scholar 

  47. Bergel S. Uber Wirkungen des Fibrins. Dtsch Med Wochenschr 1909; 35: 633.

    Article  Google Scholar 

  48. Grey EG. Fibrin as a hemostatic in cerebral surgery. Surg Gynecol Obstr 1915; 21: 452.

    Google Scholar 

  49. Harvey SC. The use of fibrin papers and forms in surgery. Boston Med Surg J 1916; 174: 658.

    Article  Google Scholar 

  50. Cronkite EP, Lozner EL, Deaver JM. Use of thrombin and fibrinogen in skin grafting. JAMA 1944; 124: 976.

    Article  Google Scholar 

  51. Matras H, Dinges HP, Lassman H, Mamoli B. Zur nahtlosen interfaszikularen Nerventransplantation im Tierexperiment. Wien Med Wochenschr 1972; 122: 517–523.

    PubMed  CAS  Google Scholar 

  52. Kuderna H, Matras H. Die klinische Anwendung der Klebung von Nreveanastomosen bei der Rekonstruktion verletzer peripherer Nerven. Wien Med Wochenschr 1975; 87: 495.

    Google Scholar 

  53. Matras H, Chiari F, Fletter G, et al. Zur Klebung von Microgefi 3anastomosen. Proceedings,13th Annual Meeting Dtsch Ges f Plast Wiederherstellungschirurgie. Stuttgart, Thieme, 1977, p. 357S.

    Google Scholar 

  54. Baxter TJ, O’Brien B, Henderson PN, Bennet RC. The histopathology of small vessels following microvascular repair. Br J Surg 1972; 59: 617–622.

    Article  PubMed  CAS  Google Scholar 

  55. Kletter G, Matras H, Dinges HP. Zur partiellen Klebung von Microgefabanastomosen im intrakraniellen Bereich. Wien Klin Wochenschr 1978; 90: 415–419.

    PubMed  CAS  Google Scholar 

  56. Aksik IA, Kikut RP, Apshkalne DL. Extraintracranial anastomosis performed by means of biological gluing materials: experimental and clinical study. Microsurg 1986; 7: 2–8.

    Article  CAS  Google Scholar 

  57. Moskovitz MJ, Bass L, Zhani L, Siebert JW. Microvascular anastomosis utilizing new intravascular stents. Ann Plast Surg 1994; 32: 612–618.

    Article  PubMed  CAS  Google Scholar 

  58. Dowbak GM, Rohrich RJ, Robinson JB, Peden E. Effectiveness of a new non-thrombogenic bioadhesive in microvascular anastomoses. J Reconstr Microsurg 1994; 10: 383–386.

    Article  PubMed  CAS  Google Scholar 

  59. Nathan HS. Nonsuture closure of arterial incisions using a rapidly polymerizing adhesive. Ann Surg 1960; 152: 648.

    Article  PubMed  CAS  Google Scholar 

  60. Vinters HV, Galil KA, Lundie MJ, Kaufman JCE. The histotoxicity of cyanoacrylates. Neuroradiology 1985; 27: 279–291.

    Article  PubMed  CAS  Google Scholar 

  61. Green AR, Milling MAP, Green RT. Butylcyanoacrylate adhesives in microvascular surgery: an experimental pilot study. J Reconstr Microsurg 1986; 2: 103–105.

    Article  PubMed  CAS  Google Scholar 

  62. Weissberg D, Goetz RH. Necrosis of arterial wall following application of methyl-2cyanoacrylate. Surg Gynecol Obstr 1964; 119: 1248.

    CAS  Google Scholar 

  63. Woodward SC, Hermann JB, Cameron JL, et al. Histotoxicity of cyanoacrylate tissue adhesive in the rat. Ann Surg 1965; 162: 113.

    Article  PubMed  CAS  Google Scholar 

  64. Dumanian GA, Dacombe W, Hong C, et al. A new photopolymerizable blood vessel glue that seals vessel anastomoses without augmenting thrombogenicity. Plast Reconstr Surg 1995; 95: 901–907.

    PubMed  CAS  Google Scholar 

  65. Pathak CP, Sawhney AS, Hubbell JA. Rapid photopolymerization of immunoprotective gels in contact with cells and tissue. J Am Chem Soc 1992; 114: 8311.

    Article  CAS  Google Scholar 

  66. Jain KK, Gorisch W. Repair of small blood vessels with the Neodymium-YAG laser: a preliminary report. Surgery 1979; 85: 684–688.

    PubMed  CAS  Google Scholar 

  67. Gomes OM, Macruz R, Armelin, et al. Vascular anastomosis by argon laser beam. Texas Heart Inst J 1981; 10: 145.

    Google Scholar 

  68. White RA, White GH, Fujitani RM, et al. Initial human evaluation of argon laser-assisted vascular anastomoses. J Vasc Surg 1987; 9: 542–547.

    Google Scholar 

  69. Okada M, Simizu K, Ikuta H, Horii H, Nakamura K. An alternative method of vascular anastomosis by laser: experimental and clinical study. Lasers Surg Med 1987; 7: 240–248.

    Article  PubMed  CAS  Google Scholar 

  70. McCarthy WJ, Hartz RS, Yao JS, et al. Vacular anastomoses with laser energy, J Vasc Surg 1986; 2: 32–41.

    Google Scholar 

  71. Bass LS, Moazami N, Pocsidio J, et al. Changes in type I collagen following laser welding. Lasers Surg Med 1992; 12: 500–505.

    Article  PubMed  CAS  Google Scholar 

  72. Serure A, Whithers EH, Thomsen S, Morris J. Comparison of carbon dioxide laser-assisted microvascular anastomosis and conventional microvascular sutured anastomosis. Surg Forum 1983; 34: 634.

    Google Scholar 

  73. Kopchok GE, White RA, White GH, et al. CO2 and argon laser welding: acute histologic and thermodynamic comparison. Lasers Surg Med 1988; 8: 584–588.

    Article  PubMed  CAS  Google Scholar 

  74. Danielsen CC. Precision method to determine denaturation temperature of collagen using ultraviolet difference spectroscopy. Coll Rlat Res 1982; 2: 143.

    Article  CAS  Google Scholar 

  75. Epstein M, Colly BC. Electron microscopic study of dosimetry for microvascular tissue welding. Laser Surg Med 1986; 6: 202.

    Google Scholar 

  76. Frazier OH, Painvin GA, Morris JR, Thomsen S, Neblett CR. Laser-assisted microvascular anstomoses: angiographie and anastomopathologic studies on growing microvascular anastomoses: preliminary report. Surgery 1985; 97: 585–590.

    PubMed  CAS  Google Scholar 

  77. Sartorius CJ, Shapiro SA, Campbell RL, Klatte EC, Clark SA. Experimental laser-assisted end-to-side microvascular anastomosis. Microsurgery 1986; 7: 79–83.

    Article  PubMed  CAS  Google Scholar 

  78. White RA, Kopchok GE, Donayre C. Mechanism of tissue fusion in argon laser-welded vein-artery anastomoses. Lasers Surg Med 1988; 8: 83–85.

    Article  PubMed  CAS  Google Scholar 

  79. Chikamatsu E, Sakurai T, Nishikimi N, Yano T, Nimura Y. Comparison of laser welding, interrupted sutures, and continuous sutures in growing vascular anastomoses. Lasers Surg Med 1995; 16: 34–40.

    Article  PubMed  CAS  Google Scholar 

  80. Unno N, Sakaguchi S, Koyano K. Microvascular anastomosis using a new diode laser system with a contact probe. Lasers Surg Med 1989; 9: 160–168.

    Article  PubMed  CAS  Google Scholar 

  81. Godlewski G, Rouy S, Tang J, Dauzat M, Chambettaz F, Salathe RP. Scanning electron-microscopy of microarterial anastomoses with a diode laser: comparison with conventional manual suture. J Reconstr Microsurg 1995; 11: 37–42.

    Article  PubMed  CAS  Google Scholar 

  82. Oz MC, Bass LS, Chuck RS, et al. Strength of laser vascular fusion: preliminary observations on the role of thrombus. Lasers Surg Med 1990; 10: 393–395.

    Article  PubMed  CAS  Google Scholar 

  83. Godlewski G, Frapier JM, DeBalman B, et al. Diode laser and microvascular carotid anastomosis: a preliminary study. Laser Med Sci 1991; 8: 33.

    Article  Google Scholar 

  84. Ludington LG, Kafrouni G, Peterson MH, Verska JJ, Mulder A, Brewer LA III. Technique for using soft, flexible stents in aortocoronary vein bypass operations. Ann Thorac Surg 1976; 21: 328–332.

    Article  PubMed  CAS  Google Scholar 

  85. Tulleken CAF, Verdaasdonk RM, Mansvelt Beck HJ. Nonocclussive excimer laser assisted end-to-side anastomosis. Ann Thorac Surg 1997; 63: S138–S142.

    Article  PubMed  CAS  Google Scholar 

  86. Heijmen RH, Borst C, van Dalen R, Gruendeman PF, Verlaan CWJ. Temporary luminal arteriotomy seal for bypass grafting. Ann Thorac Surg 1998; 65: 1093–1099.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Werker, P.M.N. (1999). Alternative Approaches to Vascular Anastomosis Surgery. In: Oz, M.C., Goldstein, D.J. (eds) Minimally Invasive Cardiac Surgery. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-3036-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3036-4_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-108-0

  • Online ISBN: 978-1-4757-3036-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics