## Abstract

In this chapter we turn our attention to processes of combined (simultaneous) heat and mass transfer that are driven by buoyancy. The density gradients that provide the driving buoyancy force are induced by the combined effects of temperature and species concentration nonuniformities present in the fluid saturated medium. The present chapter is guided by the review of Trevisan and Bejan (1990), which began by showing that the conservation statements for mass, momentum, energy, and chemical species are the equations that have been presented here in Chapters 1–3. The new feature is that beginning with Eq. (3.26) the buoyancy effect in the momentum equation is represented by two terms, one due to temperature gradients, and the other to concentration gradients.

## Keywords

Porous Medium Rayleigh Number Mixed Convection Sherwood Number Buoyancy Effect## Preview

Unable to display preview. Download preview PDF.

## References

- Alavyoon, F. 1993 On natural convection in vertical porous enclosures due to prescribed fluxes of heat and mass at the vertical boundaries.
*Int. J. Heat Mass Transfer***36**, 2479 - 2498.MATHCrossRefGoogle Scholar - Alavyoon, F., Masuda, Y. and Kimura, S. 1994 On the natural convection in vertical porous enclosures due to opposing fluxes of heat and mass prescribed at the vertical walls.
*Int. J. Heat Mass Transfer***37**, 195 - 206.MATHCrossRefGoogle Scholar - Allain, C., Cloitre, M. and Mongruel, A. 1992 Scaling in flows driven by heat and mass convection in a porous medium.
*Europhys. Lett.***20**, 313 - 318.CrossRefGoogle Scholar - Angirasa, D., Peterson, G. P. and Pop, I. 1997a Combined heat and mass transfer by natural convection in a saturated thermally stratified porous medium.
*Numer. Heat Transfer A***31**, 255 - 272.CrossRefGoogle Scholar - Angirasa,
**D.,**Peterson, G. P. and Pop, I. 1997b Combined heat and mass transfer by natural convection with opposing buoyancy effects in a fluid saturated porous medium.*Int. J. Heat Mass Transfer***40,**2755-2773.Google Scholar - Bejan, A. and Khair, K. R. 1985 Heat and mass transfer by natural convection in a porous medium.
*Int. J. Heat Mass Transfer***28**, 909-918. Brand, H. and Steinberg, V. 1983b Nonlinear effects in the convective instability of a binary mixture in a porous medium near threshold.*Phys. Lett. A***93**, 333 - 336.Google Scholar - Brand, H. R., Hohenberg, P. C. and Steinberg, V. 1983 Amplitude equation near a polycritical point for the convective instability of a binary fluid mixture in a porous medium.
*Phys. Rev. A***27**, 591 - 594.CrossRefGoogle Scholar - Charrier-Mojtabi, M. C., Karimi-Fard, M., Azaiez, M. and Mojtabi, A. 1998 Onset of a double-diffusive convective regime in a rectangular porous cavity.
*J. Porous Media***1**, 107 - 121.MATHGoogle Scholar - Chen, F. 1990 On the stability of salt-finger convection in superposed fluid and porous layers.
*ASME J. Heat Transfer***112**, 1088 - 1092.CrossRefGoogle Scholar - Chen, F. 1992 Salt-finger instability in an anisotropic and inhomogeneous porous substrate underlying a fluid layer.
*J. Appl. Phys.***71**, 5222 - 5236.CrossRefGoogle Scholar - Chen, F. and Chen, C. F. 1993 Double-diffusive fingering convection in a porous medium.
*Int. J. Heat Mass Transfer***36**, 793 - 807.MATHCrossRefGoogle Scholar - Chen, F. and Lu,
**J**. W. 1991 Influence of viscosity variation on salt-finger instability in a fluid layer, a porous layer, and their superposition.*J. Appl. Phys.***70**, 4121 - 4131.Google Scholar - Chen, F. and Lu, J. W. 1992b Onset of salt-finger convection in anisotropic and inhomogeneous porous media.
*Int. J. Heat Mass Transfer***35**, 3451 - 3464.CrossRefGoogle Scholar - Cooper, C. A., Glass, R. J. and Tyler, S. W. 1997 Experimental investigation of the stability boundary for double-diffusive finger convection in a Hele—Shaw cell.
*Water Resources Res*.**33**, 517 - 526.CrossRefGoogle Scholar - Gilman, A. and Bear, J. 1996 The influence of free convection on soil salinization i n arid regions.
*Transport in Porous Media***23**, 275 - 301.CrossRefGoogle Scholar - Goyeau,
**B.,**Mergui, S., Songe,*J.*P. and Gobin, D. 1996b Convection thermosolutale en cavité partiellement occupée par une couch poreuse faiblement perméable.*C. R. Acad. Sci. Paris*,*Sir.***11323,**447-454.Google Scholar - Goyeau,
**B.,**Songe,*J.*P. and Gobin, D. 1996a Numerical study of double-diffusive natural convection in a porous cavity using the Darcy-Brinkman formulation.*Int. J. Heat Mass Transfer***39,**1363-1378.Google Scholar - Green, T. 1984 Scales for double-diffusive fingering in porous media.
*Water Resources Res*.**20**, 1225 - 1229.CrossRefGoogle Scholar - Griffiths, R. W. 1981 Layered double-diffusive convection in porous media.
*J. Fluid Mech.***102**, 221 - 248.CrossRefGoogle Scholar - Guo,
*J.*and Kaloni, P. N. 1995a Nonlinear stability of convection induced by inclined thermal and solutal gradients.*Z. Angew. Math. Phys.***46,**645-654.Google Scholar - Guo, J. and Kaloni, P. N. 1995b Double-diffusive convection in a porous-medium, nonlinear stability, and the Brinkman effect.
*Stud. Appl. Math.***94**, 341 - 358.MathSciNetMATHGoogle Scholar - Hassan, M. and Mujumdar, A. S. 1985 Transpiration-induced buoyancy effect around a horizontal cylinder embedded in a porous medium.
*Int. J. Energy Res.***9**, 151 - 163.CrossRefGoogle Scholar - Imhoff, P. T. and Green, T. 1988 Experimental investigation of double-diffusive groundwater fingers.
*J. Fluid Mech.***188**, 363 - 382.CrossRefGoogle Scholar - Jang, J. Y. and Chang, W. J. 1988b The flow and vortex instability of horizontal natural convection in a porous medium resulting from combined heat and mass buoyancy effects.
*Int. J. Heat Mass Transfer***31**, 769 - 777.MATHCrossRefGoogle Scholar - Jang, J. Y. and Chang, W. J. I988c Buoyancy-induced inclined boundary layer flow in a porous medium resulting from combined heat and mass buoyancy effects.
*Int. Comm. Heat Mass Transfer***15**, 17 - 30.Google Scholar - Jang, J. Y. and Ni, J. R. 1989 Transient free convection with mass transfer from an isothermal vertical flat plate embedded in a porous medium.
*Int. J. Heat Fluid Flow***10**, 59 - 65.CrossRefGoogle Scholar - Jang, J. Y., Tzeng, D. J. and Shaw, H. J. 1991 Transient free convection with mass transfer on a vertical plate embedded in a high porosity medium.
*Numer. Heat Transfer A***20**, 1 - 18.CrossRefGoogle Scholar - Karimi-Fard, M., Charrier-Mojtabi, M. C. and Vafai, K. 1997 Non-Darcian effects on double-diffusive convection within a porous medium.
*Numer. Heat Transfer A***31**, 837 - 852.CrossRefGoogle Scholar - Kazmierczak, M. and Poulikakos, D. 1989 Numerical simulation of transient double diffusion in a composite porous/fluid layer heated from below.
*AIChE Sympos. Ser.***269**, 108 - 114.Google Scholar - Kazmierczak, M. and Poulikakos, D. 1991 Transient double diffusion in a fluid layer extending over a permeable substrate.
*ASME J. Heat Transfer***113**, 148 - 157.CrossRefGoogle Scholar - Khan, A. A. and Zebib, Z. 1981 Double diffusive instability in a vertical layer of porous medium.
*ASME J. Heat Transfer***103**, 179 - 181.CrossRefGoogle Scholar - Khare, H. C. and Sahai, A. K. 1993 Thermosolutal convection in a heterogeneous fluid layer in porous medium in the presence of a magnetic field.
*Int. J. Engng. Sci.***31**, 1507 - 1517.MATHCrossRefGoogle Scholar - Knobloch, E. 1986 Oscillatory convection in binary mixtures.
*Phys. Rev. A***34**, 1538 - 1549.CrossRefGoogle Scholar - Kumari, M. and Nath, G. 1989c Double diffusive unsteady free convection on two-dimensional and axisymmetric bodies in a porous medium.
*Int. J. Energy Res.***13**, 379 - 391.CrossRefGoogle Scholar - Kumari, M. and Nath, G. 1989d Double diffusive unsteady mixed convection flow over a vertical plate embedded in a porous medium.
*Int. J. Energy Res.***13**, 419430.Google Scholar - Kumari,
**M.**and Nath, G. 1992 Simultaneous heat and mass transfer under unsteady mixed convection along a vertical slender cylinder embedded in a porous medium.*Wärme-Stoffübertrag.***28,**97-105.Google Scholar - Kumari, M., Takhar, H. S. and Nath, G. 1988a Non-Darcy double-diffusive mixed convection from heated vertical and horizontal plates in saturated porous media.
*Wärme-Stoffübertrag*.**23**, 267 - 273.CrossRefGoogle Scholar - Kumari, M., Takhar,
**H**. S. and Nath, G. 1988b Double-diffusive non-Darcy free convection from two-dimensional and axisymmetric bodies of arbitrary shape in a saturated porous medium.*Indian J. Tech.***26**, 324 - 328.Google Scholar - Lai, F. C. 1990a Coupled heat and mass transfer by natural convection from a horizontal line source in saturated porous medium.
*Int. Comm. Heat Mass Transfer***17**, 489 - 499.CrossRefGoogle Scholar - Lai, F. C. 199la Coupled heat and mass transfer by mixed convection from a vertical plate in a saturated porous medium.
*Int. Comm. Heat Mass Transfer***18**, 93 - 106.Google Scholar - Lai, F. C. and Kulacki, F. A. 1990a Coupled heat and mass transfer from a sphere buried in an infinite porous medium.
*Int. J. Heat Mass Transfer***33**, 209 - 215.CrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1991d Coupled heat and mass transfer by natural convection from vertical surfaces in porous media.
*Int. J. Heat Mass Transfer***34**, 1189 - 1194.CrossRefGoogle Scholar - Lai, F. C., Choi, C. Y. and Kulacki, F. A. 1990b Coupled heat and mass transfer by natural convection from slender bodies of revolution in porous media.
*Int. Comm. Heat Mass Transfer***17**, 609 - 620.CrossRefGoogle Scholar - Larson, S. E. and Poulikakos, D. 1986 Double diffusion from a horizontal line source in an infinite porous medium.
*Inn. J. Heat Mass Transfer***29**, 492 - 495.MATHCrossRefGoogle Scholar - Lawson,
**M.**L. and Yang, W. J. 1975 Thermal instability of binary gas mixtures in a porous medium.*ASME J. Heat Transfer***97,**378-381.Google Scholar - Lawson, M. L., Yang, W. J. and Bunditkul, S. 1976 Theory of thermal stability of binary gas mixtures in porous media.
*ASME J. Heat Transfer***98**, 35 - 41.CrossRefGoogle Scholar - Lee, K. B. and Howell, J. R. 1991 Theoretical and experimental heat and mass transfer in highly porous media.
*Int. J. Heat Mass Transfer***34**, 2123 - 2132.CrossRefGoogle Scholar - Lin, D. K. 1992 Unsteady natural convection heat and mass transfer in a saturated porous enclosure.
*Wärme-Stoffübertrag*.**28**, 49 - 56.CrossRefGoogle Scholar - Mamou, M., Vasseur, P. and Bilgen, E. 1995b Multiple solutions for double-diffusive convection in a vertical porous enclosure.
*Int. J. Heat Mass Transfer***38**, 17871798.Google Scholar - Mamou, M., Vasseur, P., Bilgen, E. and Gobin, D. 1994 Double-diffusive convection in a shallow porous layer.
*Heat Transfer*,*1994*. Inst. Chem. Engrs, Rugby, vol. 5, pp. 339 - 344.Google Scholar - Mamou, M., Vasseur, P., Bilgen, E. and Gobin, D. 1995a Double-diffusive convection in an inclined slot filled with porous medium.
*European J. Mech. B/Fluids***14**, 629 - 652.MATHGoogle Scholar - Manole, D. M., Lage, J. L. and Nield, D. A. 1994 Convection induced by inclined thermal and solutal gradients, with horizontal mass flow, in a shallow horizontal layer of a porous medium.
*Int. J. Heat Mass Transfer*37, 2047 - 2057.MATHCrossRefGoogle Scholar - Mehta, K. N. and Nandakumar, K. 1987 Natural convection with combined heat and mass transfer buoyancy effects in non-homogeneous porous medium.
*Int. J. Heat Mass Transfer***30**, 2651 - 2656.CrossRefGoogle Scholar - Murray, B. T. and Chen, C. F. 1989 Double-diffusive convection in a porous medium.
*J. Fluid Mech.***201**, 147 - 166.CrossRefGoogle Scholar - Nakayama, A. and Ashizawa, T. 1996 A boundary layer analysis of combined heat and mass transfer by natural convection from a concentrated source in a saturated porous medium.
*Appl. Sci. Res.***56**, 1 - 11.MATHCrossRefGoogle Scholar - Nakayama, A. and Hossain, M. A. 1995 An integrated treatment for combined heat and mass transfer by natural convection in a porous medium.
*Int. J. Heat Mass Transfer***38**, 761 - 765.CrossRefGoogle Scholar - Nguyen, H. D., Paik, S. and Douglass, R. W. 1994 Study of double-diffusive convection in layered anisotropic porous media.
*Numer. Heat Transfer B***26**, 489505.Google Scholar - Nguyen, H. D., Paik, S. and Douglass, R. W. 1997a Double-diffusive convection in a porous trapezoidal enclosure with oblique principal axes.
*AAIA J. Thermophys. Heat Transfer***11**, 309 - 312.CrossRefGoogle Scholar - Nield, D. A., Manole, D. M. and Lage,
**J**. L. 1993 Convection induced by inclined thermal and solutal gradients in a shallow layer of a porous medium.*J. Fluid Mech.***257**, 559 - 574.Google Scholar - Nithiarasu, P., Seetharamu, K. N. and Sundarajan, T. 1996 Double-diffusive natural convection in an enclosure filled with a fluid saturated porous medium: A generalized non-Darcy approach.
*Numer. Heat Transfer A***30**, 413 - 426.CrossRefGoogle Scholar - Ouarzazi, M. N. and Bois, P. A. 1994 Convective instability of a fluid mixture in a porous medium with time-dependent temperature gradient.
*European J. Mech. B/Fluids***13**, 275 - 295.MathSciNetGoogle Scholar - Ouarzazi, M. N., Bois, P. A. and Taki, M. 1994 Nonlinear interaction of convective instabilities and temporal chaos of a fluid mixture in a porous medium.
*European J. Mech. B/Fluids***13**, 423 - 438.MathSciNetMATHGoogle Scholar - Parthiban, C. and Patil, P. R. 1994 Effect of inclined gradients on thermohaline convection in porous medium.
*Wärme-Stoffübertrag*.**29**, 291 - 297.CrossRefGoogle Scholar - Parvathy, C. P. and Patil, P. R. 1989 Effect of thermal diffusion on thermohaline interleaving in a porous medium due to horizontal gradients.
*Indian J. Pure Appl. Math.***20**, 716 - 727.MATHGoogle Scholar - Patil, P. R. and Rudraiah, N. 1980 Linear convective stability and thermal diffusion of a horizontal quiescent layer of a two-component fluid in a porous medium.
*Int. J. Engng. Sci.***18**, 1055 - 1059.MATHCrossRefGoogle Scholar - Patil, P. R. and Subramanian, L. 1992 Soret instability in anisotropic porous medium with temperature-dependent viscosity.
*Fluid Dyn. Res.***10**, 159 - 168.CrossRefGoogle Scholar - Patil, P. R. and Vaidyanathan, G. 1982 Effect of variable viscosity on thermohaline convection in a porous medium.
*J. Hydrol.***57**, 147 - 161.CrossRefGoogle Scholar - Patil, P. R., Parvathy, C. P. and Venkatakrishnan, K. S. 1989 Thermohaline instability in a rotating anisotropic porous medium.
*Appl. Sci. Res.***46**, 73 - 88.MATHCrossRefGoogle Scholar - Pop, I. and Herwig, H. 1990 Transient mass transfer from an isothermal vertical flat plate embedded in a porous medium.
*Int. Comm. Heat Mass Transfer***17**, 813 - 821.CrossRefGoogle Scholar - Poulikakos, D. 1985a On buoyancy induced heat and mass transfer from a concentrated source in an infinite porous medium.
*Int. J. Heat Mass Transfer***28**, 621 - 629.MATHCrossRefGoogle Scholar - Poulikakos, D. 1985c The effect of a third diffusing component on the onset of convection in a horizontal porous layer.
*Phys. Fluids***28**, 3172 - 3174.MathSciNetMATHCrossRefGoogle Scholar - Poulikakos, D. 1986 Double diffusive convection in a horizontally sparsely packed porous layer.
*Int. Comm. Heat Mass Transfer***13**, 587 - 598.CrossRefGoogle Scholar - Qin, Y., Guo,
**J**. L. and Kaloni, P.N. 1995 Double diffusive penetrative convection in porous media.*Mt. J. Engng. Sci.***33**, 303 - 312.Google Scholar - Raptis, A. and Tzivanidis, G. 1984 Unsteady flow through a porous medium with the presence of mass transfer.
*Int. Comm. Heat Mass Transfer***11**, 97 - 102.CrossRefGoogle Scholar - Raptis, A., Tzivanidis, G. and Kafousias, N. 1981 Free convection and mass transfer flow through a porous medium bounded by an infinite vertical limiting surface with constant suction.
*Lett. Heat Mass Transfer***8**, 417 - 424.CrossRefGoogle Scholar - Rastogi, S. K. and Poulikakos, D. 1993 Double diffusion in a liquid layer under a permeable solid region.
*Numer. Heat Transfer A***24**, 427 - 449.CrossRefGoogle Scholar - Rastogi, S. K. and Poulikakos, D. 1995 Double diffusion from a vertical surface in a porous region.
*Int. J. Heat Mass Transfer***38**, 935 - 946.MATHCrossRefGoogle Scholar - Rastogi, S. K. and Poulikakos, D. 1997 Experiments on double-diffusion in a composite system comprised of a packed layer of spheres and an underlying layer.
*Heat Mass Transfer***32**, 181 - 191.CrossRefGoogle Scholar - Rehberg, I. and Ahlers, G. 1985 Experimental observation of a codimension-two bifurcation in a binary fluid mixture.
*Phys. Rev. Lett.***55**, 500 - 503.CrossRefGoogle Scholar - Rosenberg, N. D. and Spera, F. J. 1992 Thermohaline convection in a porous medium heated from below.
*Int. J. Heat Mass Transfer***35**, 1261 - 1273.CrossRefGoogle Scholar - Rubin, H. 1975 Effect of solute dispersion on thermal convection in a porous medium layer. 2.
*Water Resources Res*.**11**, 154 - 158.CrossRefGoogle Scholar - Rubin, H. 1976 Onset of thermohaline convection in a cavernous aquifer.
*Water Resources Res*.**12**, 141 - 147.CrossRefGoogle Scholar - Rubin, H. 1982a Thermohaline convection in a nonhomogeneous aquifer.
*J. Hydrol.***57**, 307 - 320.CrossRefGoogle Scholar - Rubin, H. 1982b Application of the aquifers average characteristics for determining the onset of thermohaline convection in a heterogeneous aquifer.
*J. Hydrol.***57**, 321 - 336.CrossRefGoogle Scholar - Rubin, H. and Roth, C. 1978 Instability of horizontal thermohaline flow in a porous medium layer.
*Israel J. Tech.***16**, 216 - 223.MATHGoogle Scholar - Rubin, H. and Roth, C. 1983 Thermohaline convection in flowing groundwater.
*Adv. Water Resources***6**, 146 - 156.CrossRefGoogle Scholar - Rudraiah, N. and Vortmeyer, D. 1982 The influence of permeability and of a third diffusing component upon the onset of convection in a porous medium.
*Int. J. Heat Mass Transfer***25**, 457 - 464.MATHCrossRefGoogle Scholar - Rudraiah, N., Sheela, R. and Srimani, P. K. 1987 Mixed thermohaline convection in an inclined porous layer.
*ASME HTD***84**, 97 - 101.Google Scholar - Rudraiah, N., Shivakumara, I. S. and Friedrich, R. 1986 The effect of rotation on linear and nonlinear double-diffusive convection in a sparsely packed, porous medium.
*Int. J. Heat Mass Transfer***29**, 1301 - 1317.MATHCrossRefGoogle Scholar - Rudraiah, N., Srimani, P. K. and Friedrich, R. 1982 Finite amplitude convection in a two-component fluid saturated porous layer.
*Int. J. Heat Mass Transfer***25**, 715722.Google Scholar - Sandner, H. 1986 Double diffusion effects in a cylindrical porous bed filled with salt water.
*Heat Transfer*,*1986*. Hemisphere, Washington, DC, vol. 5, pp. 2623 - 2627.Google Scholar - Sarkar, A. and Phillips, O. M. 1992a Effects of horizontal gradients on thermohaline instabilities in infinite porous media.
*J. Fluid Mech.***242**, 79 - 98.MATHCrossRefGoogle Scholar - Sarkar, A. and Phillips, O. M. 1992b Effects of horizontal gradients on thermohaline instabilities in a thick porous layer.
*Phys. Fluids A***4**, 1165 - 1175.MATHCrossRefGoogle Scholar - Selimos, B. and Poulikakos, D. 1985 On double diffusion in a Brinkman heat generating porous layer.
*Int. Comm. Heat Mass Transfer***12**, 149 - 158.CrossRefGoogle Scholar - Sharma, R. C. and Kumar, P. 1996 Hall effect on thermosolutal instability in a Maxwellian viscoelastic fluid in porous medium.
*Arch. Mech.***48**, 199 - 209.MATHGoogle Scholar - Sheridan, J., Williams, A. and Close, D. J. 1992 Experimental study of natural convection with coupled heat and mass transfer in porous media.
*Int. J. Heat Mass Transfer***35**, 2131 - 2143.CrossRefGoogle Scholar - Steinberg, V. and Brand, H. 1983 Convective instabilities of binary mixtures with fast chemical reaction in a porous medium.
*J. Chem. Phys.***78**, 2655 - 2660.CrossRefGoogle Scholar - Subramanian, L. and Patil, P. R. 1991 Thermohaline convection with coupled molecular diffusion in an anisotropic porous medium.
*Indian J. Pure Appl. Math.***22**, 169 - 193.MATHGoogle Scholar - Subramanian, S. 1994 Convective instabilities induced by exothermic reactions occurring in a porous medium.
*Phys. Fluids***6**, 2907 - 2922.MathSciNetMATHCrossRefGoogle Scholar - Sunil 1994 Thermosolutal hydromagnetic instability of a compressible and partially ionized plasma in a porous medium.
*Arch. Mech.***46**, 819 - 828.MATHGoogle Scholar - Telles, R. S. and Trevisan, O.V. 1993 Dispersion in heat and mass transfer natural convection along vertical boundaries in porous media.
*Int. J. Heat Mass Transfer***36**, 1357 - 1365.CrossRefGoogle Scholar - Trevisan, O. V. and Bejan, A. 1985 Natural convection with combined heat and mass transfer buoyancy effects in a porous medium.
*Int. J. Heat Mass Transfer***28**, 1597 - 1611.CrossRefGoogle Scholar - Trevisan, O. V. and Bejan, A. 1987b Mass and heat transfer by high Rayleigh number convection in a porous medium heated from below.
*Int. J. Heat Mass Transfer***3 0**, 2341 - 2356.Google Scholar - Trevisan, O. V. and Bejan, A. 1989 Mass and heat transfer by natural convection above a concentrated source buried at the base of a shallow porous layer.
*ASME HTD***127**, 47 - 54.Google Scholar - Trevisan, O. V. and Bejan, A. 1990 Combined heat and mass transfer by natural convection in a porous medium.
*Adv. Heat Transfer***20**, 315 - 352.CrossRefGoogle Scholar - Tyvand, P. A. 1980 Thermohaline instability in anisotropic porous media.
*Water Resources Res*.**16**, 325 - 330.CrossRefGoogle Scholar - Wooding, R. A., Tyler, S. W. and White, I. 1997a Convection in groundwater below an evaporating salt lake: 1. Onset of instability.
*Water Resources Res*.**33**, 11991217.Google Scholar - Wooding, R. A., Tyler, S. W., White, I. and Anderson, P. A. 1997b Convection in groundwater below an evaporating salt lake: 2. Evolution of fingers or plumes.
*Water Resources Res*.**33**, 1219 - 1228.CrossRefGoogle Scholar - Yih, K. A. 1997 The effect of transpiration on coupled heat and mass transfer in mixed convection over a vertical plate embedded in a saturated porous medium.
*Int. Comm. Heat Mass Transfer***24**, 265 - 275.CrossRefGoogle Scholar - Yücel, A. 1990 Natural convection heat and mass transfer along a vertical cylinder i n a porous medium.
*Int. J. Heat Mass Transfer*33, 2265-2274.Google Scholar - Yücel, A. 1993 Mixed convective heat and mass transfer along a vertical surface in a porous medium.
*ASME HTD***240**, 49 - 57.Google Scholar - Zhang, Z. and Bejan, A. 1987 The horizontal spreading of thermal and chemical deposits in a porous medium.
*Int. J. Heat Mass Transfer***30**, 2289 - 2303.CrossRefGoogle Scholar - Patil, P. R., Parvathy, C. P. and Venkatakrishnan, K. S. 1990 Effect of rotation on the stability of a doubly diffusive layer in a porous medium.
*Int. J. Heat Mass Transfer***33**, 1073 - 1080.CrossRefGoogle Scholar - Taslim, M. E. and Narusawa, U. 1986 Binary fluid convection and double-diffusive convection.
*ASME J. Heat Transfer***108**, 221 - 224.CrossRefGoogle Scholar - Trevisan, O. V. and Bejan, A. 1986 Mass and heat transfer by natural convection in a vertical slot filled with porous medium.
*Int. J. Heat Mass Transfer***29**, 403 - 415.MATHCrossRefGoogle Scholar