## Abstract

Since we have dealt with natural convection and forced convection in some detail, our treatment of mixed convection can be brief. It is guided by the review paper by Lai *et al*. (1991a). We start with a treatment of boundary layer flow on heated plane walls inclined at some nonzero angle to the horizontal.

## Keywords

Nusselt Number Rayleigh Number Forced Convection Mixed Convection Local Nusselt Number## Preview

Unable to display preview. Download preview PDF.

## References

- Aldoss, T. K. 1996 MHD mixed convection from a vertical cylinder embedded in a porous medium.
*Int. Comm. Heat Mass Transfer***23**, 517–530.CrossRefGoogle Scholar - Aldoss, T. K., Chen, T. S. and Armaly, B. F. 1993a Nonsimilarity solutions for mixed convection from horizontal surfaces in a porous medium—Variable surface heat flux.
*Ina. J. Heat Mass Transfer***36**, 463–470.MATHCrossRefGoogle Scholar - Aldoss, T. K., Chen, T. S. and Armaly, B. F. 1993b Nonsimilarity solutions for mixed convection from horizontal surfaces in a porous medium—Variable wall temperature.
*Int. J. Heat Mass Transfer***36**, 471–477.MATHCrossRefGoogle Scholar - Aldoss, T. K., Chen, T. S. and Armaly, B. F. 1994a Mixed convection over nonisothermal horizontal surfaces in a porous medium—The entire regime.
*Numer. Heat Transfer A***25**, 685–701.CrossRefGoogle Scholar - Aldoss, T. K., Jarrah, M. A. and Al-Sha’er, B. J. 1996 Mixed convection from a vertical cylinder embedded in a porous medium: Non-Darcy model.
*Int. J. Heat Mass Transfer***39**, 1141–1148.CrossRefGoogle Scholar - Aldoss, T. K., Jarrah, M. A. and Duwairi, H. M. 1994b Wall effect on mixed convection flow from horizontal surfaces with a variable heat flux.
*Canad. J. Chem. Engng*.**72**, 35–42.CrossRefGoogle Scholar - Aldoss, T. K., Alnimr, M. A., Jarrah, M. A. and Alshaer, B. J. 1995 Magnetohydrodynamic mixed convection from a vertical plate embedded in a porous medium.
*Numer. Heat Transfer A***28**, 635–645.CrossRefGoogle Scholar - Chandrasekhara, B. C. 1985 Mixed convection in the presence of horizontal impermeable surfaces in saturated porous media with variable permeability.
*Wärme-Stoffübertrag*.**19**, 195–201.CrossRefGoogle Scholar - Chandrasekhara, B. C. and Nagaraju, P. 1988 Composite heat transfer in the case of a steady laminar flow of a gray fluid with small optical density past a horizontal plate embedded in a saturated porous medium.
*Wärme-Stoffübertrag*.**23**, 343–352.CrossRefGoogle Scholar - Chandrasekhara, B. C. and Nagaraju, P. 1993 Composite heat transfer in a variable porosity medium bounded by an infinite flat plate.
*Wärme-Stoffübertrag*.**28**, 449–456.CrossRefGoogle Scholar - Chandrasekhara, B. C. and Namboodiri, P. M. S. 1985 Influence of variable permeability on combined free and forced convection about inclined surfaces in porous media.
*Int. J. Heat Mass Transfer***28**, 199–206.MATHCrossRefGoogle Scholar - Chang, W. J. and Chang, W. L. 1995 Mixed convection in a vertical tube partially filled with porous medium.
*Numer. Heat Transfer A***28**, 739–754.CrossRefGoogle Scholar - Chang, W. J. and Chang, W. L. 1996 Mixed convection in a vertical parallel-plate channel partially filled with porous media of high permeability.
*Int. J. Heat Mass Transfer***39**, 1331–1342..Google Scholar - Chen, C. H. 1996 Non-Darcy mixed convection from a horizontal surface with variable surface heat flux in a porous medium.
*Numer. Heat Transfer*A**30**, 859–869.Google Scholar - Chen, C. H. 1997a Non-Darcy mixed convection over a vertical flat plate in porous media with variable wall heat flux.
*Int. Comm. Heat Mass Transfer***24**, 427–437.CrossRefGoogle Scholar - Chen, C. H. 1997b Analysis of non-Darcian mixed convection from impermeable horizontal surfaces in porous media: The entire regime.
*Int. J. Heat Mass Transfer***40**, 2993–2997.MATHCrossRefGoogle Scholar - Chen, C. K. and Chen, C. H. 1990b Nonuniform porosity and non-Darcian effects on conjugate mixed convection heat transfer from a plate fin in porous media.
*Int. J. Heat Fluid Flow*, 65–71.Google Scholar**11** - Chen, C. K. and Chen, C. H. 1991 Non-Darcian effects on conjugate mixed convection about a vertical circular pin in a porous medium.
*Comput. Struct*.**38**, 529–535.MATHCrossRefGoogle Scholar - Chen, C. K. and Lin, C. R. 1995 Natural convection from an isothermal vertical surface embedded in a thermally stratified high-porosity medium.
*Int. J. Engng Sci*.**33**, 131–138.MATHCrossRefGoogle Scholar - Chen, C. K., Chen, C. H., Minkowycz, W. J. and Gill, U. S. 1992 Non-Darcian effects on mixed convection about a vertical cylinder embedded in a saturated porous medium.
*Int. J. Heat Mass Transfer***35**, 3041–3046.CrossRefGoogle Scholar - Cheng, P. and Zheng, T. M. 1986 Mixed convection in the thermal plume above a horizontal line source of heat in a porous medium of infinite extent.
*Heat Transfer*,*1986*. Hemisphere, Washington, DC vol. 5, pp. 2671–2675.Google Scholar - Choi, C. Y. and Kulacki, F. A. 1990 Non-Darcian effects on mixed convection in a vertical porous annulus.
*Heat Transfer*,*1990*. Hemisphere, New York, vol. 5, pp. 271–276.Google Scholar - Choi, C. Y. and Kulacki, F. A. 1992a Mixed convection in vertical porous channels and annuli.
*Heat and Mass Transfer in Porous Media*. (eds. M. Quintard and M. Todorovic). Elsevier, Amsterdam, pp. 61–98.Google Scholar - Choi, C. Y. and Kulaki, F. A. 1992b Mixed convection through vertical porous annuli locally heated from the inner cylinder.
*ASME J. Heat Transfer***114**, 143–151.CrossRefGoogle Scholar - Choi, C. Y. and Kulaki, F. A. 1993 Non-Darcian effects on mixed convection in a vertical packed-sphere annulus.
*ASME J. Heat Transfer***115**, 506–510.CrossRefGoogle Scholar - Choi, C. Y., Lai, F. C. and Kulacki, F. A. 1989 Mixed convection in vertical porous annuli.
*AIChE Sympos. Ser*.**269**, 356–361.Google Scholar - Choi, J. and Viskanta, R. 1993 Freezing of aqueous sodium chloride solution saturated packed bed from a vertical wall of a rectangular cavity.
*Int. J. Heat Mass Transfer***36**, 2805–2813.CrossRefGoogle Scholar - Chou, F. C. and Chung, P. Y. 1995 Effect of stagnant conductivity on non-Darcian mixed convection in horizontal square packed channels.
*Numer. Heat Transfer A***27**, 195–209.CrossRefGoogle Scholar - Chou, F. C., Cheng, C. J. and Lien, W. Y. 1992a Analysis and experiment of nonDarcian convection in horizontal square packed-sphere channels.-2. Mixed convection.
*Int. J. Heat Mass Transfer***35**, 1197–1207.CrossRefGoogle Scholar - Chou, F. C., Chung, P. Y. and Cheng, C.
*J*. 1992b Effects of stagnant and dispersion conductivities on non-Darcian forced convection in square packed-sphere channels.*Canad. J. Chem. Engng*.**69**, 1401–1407.Google Scholar - Chou, F. C., Lin, W. Y. and Lin, S. H. 1992c Analysis and experiment of non-Darcian convection in horizontal square packed-sphere channels-1. Forced convection.
*Int. J. Heat Mass Transfer***35**, 195–205.CrossRefGoogle Scholar - Ene, H. I. 1991 Effects of anisotropy on the free convection from a vertical plate embedded in a porous medium.
*Transport in Porous Media***6**, 183–194.CrossRefGoogle Scholar - Epherre, J. F. 1975 Criterion for the appearance of natural convection in an anisotropic porous layer.
*Rev. Gin. Thermique***168**, 949–950. English translation,*Int. Chem. Engng*.**17**, 615–616, 1977.Google Scholar - Ettefagh, J., Vafai, K. and Kim, S. J. 1991 Non-Darcian effects in open ended cavities filled with a porous medium.
*ASME J. Heat Transfer***113**, 747–756.CrossRefGoogle Scholar - Evans, D. G. and Nunn, J. A. 1989 Free thermohaline convection in sediments surrounding a salt column.
*J. Geophys. Res*.**94**, 12413–12422.CrossRefGoogle Scholar - Evans, G. H. and Plumb, O. A. 1978 Natural convection from a vertical isothermal surface imbedded in a saturated porous medium.
*AIAA-ASME Thermophysics and Heat Transfer Conf*., Paper 78-HT-55, Palo Alto, CA.Google Scholar - Facas, G. N. and Farouk, B. 1983 Transient and steady-state natural convection in a porous medium between two concentric cylinders.
*ASME J. Heat Transfer***105**, 660–663.CrossRefGoogle Scholar - Facas, G. N. 1994 Reducing the heat transfer from a hot pipe buried in a semi-infinite, saturated, porous medium.
*ASME J. Heat Transfer***116**, 473–476.CrossRefGoogle Scholar - Facas, G. N. 1995a Natural convection from a buried pipe with external baffles.
*Numer. Heat Transfer A***27**, 595–609.CrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1991a Non-Darcy mixed convection along a vertical wall in a saturated porous medium.
*ASME J. Heat Transfer***113**, 252–255.CrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1991b Experimental study of free and mixed convection in horizontal porous layers locally heated from below.
*Int. J. Heat Mass Transfer***34**, 525–541.CrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1991c Oscillatory mixed convection in horizontal porous layers locally heated from below.
*Int. J. Heat Mass Transfer***34**, 887–890.CrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1991d Coupled heat and mass transfer by natural convection from vertical surfaces in porous media.
*Int. J. Heat Mass Transfer***34**, 1189–1194.CrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1991e Experimental study in horizontal layers with multiple heat sources.
*AIAA J. Thermophys. Heat Transfer***5**, 627–630.CrossRefGoogle Scholar - Lai, F. C., Choi, C. Y. and Kulacki, F. A. 1990a Free and mixed convection in horizontal porous layers with multiple heat sources.
*AIAA J. Thermophys. Heat Transfer***4**, 221–227.CrossRefGoogle Scholar - Lai, F. C., Pop, I. and Kulacki, F. A. 1991b Natural convection from isothermal plates embedded in thermally stratified porous media.
*AIAA J. Thermophys. Heat Transfer***4**, 533–535.Google Scholar - Lai, F. C., Prasad, V. and Kulacki, F. A. 1987b Effects of the size of heat source on mixed convection in horizontal porous layers heated from below.
*Proc. ASME JSME Thermal Engineering Joint Conference*, vol. 2, pp. 413–419.Google Scholar - Lai, F. C., Prasad, V. and Kulacki, F. A. 1988 Aiding and opposing mixed convection in a vertical porous layer with a finite wall heat source.
*Int. J. Heat Mass Transfer***31**, 1049–1061.CrossRefGoogle Scholar - Lan, X. K. and Khodadadi,
*J*. M. 1993 Fluid flow and heat transfer through a porous medium channel with permeable walls.*Int. J. Heat Mass Transfer***36**, 2242–2245.Google Scholar - Lapwood, E. R. 1948 Convection of a fluid in a porous medium.
*Proc. Cambridge Philos. Soc*.**44**, 508–521.MathSciNetMATHCrossRefGoogle Scholar - Larbi, S., Bacon, G. and Bories, S. A. 1995 Diffusion d’air humide avec condensation de vapeur d’eau en milieu poreux.
*Int. J. Heat Mass Transfer***38**, 2411–2426.CrossRefGoogle Scholar - Larson, S. E. and Poulikakos, D. 1986 Double diffusion from a horizontal line source in an infinite porous medium.
*Inn. J. Heat Mass Transfer***29**, 492–495.MATHCrossRefGoogle Scholar - Lauriat, G. and Prasad, V. 1987 Natural convection in a vertical porous cavity: A numerical study for Brinkman-extended Darcy formulation.
*ASME J. Heat Transfer***109**, 688–696.CrossRefGoogle Scholar - Lauriat, G. and Prasad, V. 1989 Non-Darcian effects on natural convection in a vertical porous layer.
*Int. J. Heat Mass Transfer***32**, 2135–2148.CrossRefGoogle Scholar - Lauriat, G. and Prasad, V. 1991 Natural convection in a vertical porous annulus.
*Convective Heat and Mass Transfer in Porous Media*(eds. S. Kakaç, B. Kilkis, F. A. Kulacki and F. Arinç). Kluwer Academic, Dordrecht, pp. 143–172.Google Scholar - Morega, A. M., Bejan, A. and Lee, S. W. 1995 Free stream cooling of a stack of parallel plates.
*Int. J. Heat Mass Transfer***38**, 519–531.CrossRefGoogle Scholar - Morland, L. W., Zebib, A. and Kassoy, D. R. 1977 Variable property effects on the onset of convection in an elastic porous matrix.
*Phys. Fluids***20**, 1255–1259.CrossRefGoogle Scholar - Moya, S. L., Ramos, E. and Sen, M. 1987 Numerical study of natural convection in a tilted rectangular porous material.
*Int. J. Heat Mass Transfer***30**, 741–756.CrossRefGoogle Scholar - Mullis, A. M. 1995 Natural convection in porous, permeable media—Sheets, wedges and lenses.
*Marine Petrol. Geol*.**12**, 17–25.CrossRefGoogle Scholar - Muralidhar, K. 1989 Mixed convection flow in a saturated porous annulus.
*Int. J. Heat Mass Transfer***32**, 881–888.CrossRefGoogle Scholar - Muralidhar, K. 1992 Study of heat transfer from buried nuclear waste canisters.
*Int. J. Heat Mass Transfer***35**, 3493–3495.CrossRefGoogle Scholar - Muralidhar, K. 1993 Near-field solution for heat and mass transfer from buried nuclear waste canisters.
*Int. J. Heat Mass Transfer***36**, 2665–2674.CrossRefGoogle Scholar - Muralidhar, K., Baunchalk, R. A. and Kulacki, F. A. 1986 Natural convection in a horizontal porous annulus with a step distribution in permeability.
*ASME J. Heat Transfer***108**, 889–893.CrossRefGoogle Scholar - Oosthuizen, P. H. 1995 Heat transfer from a cylinder with a specified surface heat flux buried in a frozen porous medium in an enclosure with a cooled top surface.
*Proc. ASME/JSME Thermal Engineering Joint Conf*, vol. 3, pp. 379–386.Google Scholar - Oosthuizen, P. H. and Naylor, D. 1996a Natural convective heat transfer from a cylinder in an enclosure partly filled with a porous medium.
*Int. J. Numer. Methods Heat Fluid Flow***6**, 51–63.MATHCrossRefGoogle Scholar - Oosthuizen, P. H. and Naylor, D. 1996b Heat transfer from a heated cylinder with a specified surface heat flux buried in a frozen porous medium in an enclosure with non-uniform wall temperatures.
*ASME HTD***331**, 43–52.Google Scholar - Oosthuizen, P. H. and Paul, J. T. 1992 Heat transfer from a heated cylinder buried in a frozen porous medium in an enclosure.
*Heat and Mass Transfer in Porous Media*(eds. M. Quintard and M. Toderovic). Elsevier, Amsterdam, pp. 315–326.Google Scholar - Or, A. C. 1989 The effects of temperature-dependent viscosity and the instabilities in convection rolls of a layer of fluid-saturated porous medium.
*J. Fluid Mech*.**206**, 497–515.MathSciNetMATHCrossRefGoogle Scholar - Ormond, A. and Genthon, P. 1993 Three-dimensional thermoconvection in an anisotropic inclined sedimentary layer.
*Geophys. J. Int*.**112**, 257–263.CrossRefGoogle Scholar - Orozco, J. 1992 Condensation of a downward flowing vapor on a horizontal cylinder embedded in a porous medium.
*ASME J. Energy Res. Tech*.**113**, 300–304.CrossRefGoogle Scholar - Palm, E. and Tveitereid, M. 1979 On heat and mass flux through dry snow.
*J. Geophys. Res*.**84**, 745–749.CrossRefGoogle Scholar - Palm, E. and Tyvand, P. 1984 Thermal convection in a rotating porous layer.
*J. Appl. Math. Phys. (ZAMP)*,**35**, 122–123.MATHCrossRefGoogle Scholar - Palm, E., Weber, J. E. and Kvernvold, O. 1972 On steady convection in a porous medium.
*J. Fluid Mech*.**54**, 153–161.MATHCrossRefGoogle Scholar - Pan, C. P. and Lai, F. C. 1995 Natural convection in horizontal-layered porous annuli.
*AIAA J. Thermophys. Heat Transfer***9**, 792–795.CrossRefGoogle Scholar - Pan, C. P. and Lai, F. C. 1996 Re-examination of natural convection in a horizontal layered porous annulus.
*ASME J. Heat Transfer***118**, 990–992.CrossRefGoogle Scholar - Parang, M. and Keyhani, M. 1987 Boundary effects in laminar mixed convection flow through an annular porous medium.
*ASME J. Heat Transfer***109**, 1039–1041.CrossRefGoogle Scholar - Parmentier, E. M. 1979 Two-phase natural convection adjacent to a vertical heated surface in a permeable medium.
*Int. J. Heat Mass Transfer***22**, 849–855.CrossRefGoogle Scholar - Ramesh, P. S. and Torrance, K. E. 1990 Stability of boiling in porous media.
*Int. J. Heat Mass Transfer***33**, 1895–1908.MATHCrossRefGoogle Scholar - Ramesh, P. S. and Torrance, K. E. 1993 Boiling in a porous layer heated from below: Effects of natural convection and a moving liquid/two-phase surface.
*J. Fluid Mech*.**257**, 289–309.MATHCrossRefGoogle Scholar - Ramirez, N. E. and Saez, A. E. 1990 The effect of variable viscosity on boundary-layer heat transfer in a porous medium.
*Int. Comm. Heat Mass Transfer***17**, 477–485.CrossRefGoogle Scholar - Ranganathan, R. and Viskanta, R. 1984 Mixed convection boundary-layer flow along a vertical surface in a porous medium.
*Numer. Heat Transfer***7**, 305–317.MATHGoogle Scholar - Rao, K. N. and Pop, I. 1994 Transient free convection in a fluid saturated porous medium with temperature-dependent viscosity.
*Int. Comm. Heat Mass Transfer***21**, 573–591.CrossRefGoogle Scholar - Yu, W. S., Lin, H. T. and Lu, C. S. 1991 Universal formulations and comprehensive correlations for non-Darcy natural convection and mixed convection in porous media.
*Int. J. Heat Mass Transfer***34**, 2859–2868.MATHCrossRefGoogle Scholar

## Copyright information

© Springer Science+Business Media New York 1999