Convection in Porous Media pp 33-50 | Cite as

# Mass Transfer in a Porous Medium: Multicomponent and Multiphase Flows

Chapter

## Abstract

The term “mass transfer” is used here in a specialized sense, namely the transport of a substance that is involved as a component (constituent, species) in a fluid mixture. An example is the transport of salt in saline water. As we shall see below, convective mass transfer is analogous to convective heat transfer.

## Keywords

Porous Medium Capillary Pressure Relative Permeability Representative Elementary Volume Multiphase Flow
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

- Chao, B. H., Wang, H. and Cheng, P. 1996 Stagnation point flow of a chemical reactive fluid in a catalytic porous bed.
*Int. J. Heat Mass Transfer***39**, 3003–3019.MATHCrossRefGoogle Scholar - Charrier-Mojtabi, M. C. 1997 Numerical simulation of two-and three-dimensional free convective flows in a horizontal porous annulus using a pressure and temperature formulation.
*Int. J. Heat Mass Transfer***40**, 1521–1533.MATHCrossRefGoogle Scholar - Charrier-Mojtabi, M. C., Karimi-Fard, M., Azaiez, M. and Mojtabi, A. 1998 Onset of a double-diffusive convective regime in a rectangular porous cavity.
*J. Porous Media***1**, 107–121.MATHGoogle Scholar - Charrier-Mojtabi, M. C., Mojtabi, A., Azaiez, M. and Labrosse, G. 1991 Numerical and experimental study of multicellular free convection flows in an annular porous pipe.
*Int. J. Heat Mass Transfer***34**, 3061–3074.MATHCrossRefGoogle Scholar - Chaudhary, M. A., Merkin, J. H. and Pop. I. 1995 Similarity solutions in free convection boundary-layer flows adjacent to vertical permeable surfaces in porous media: II Prescribed surface heat flux.
*Heat Mass Transfer***30**, 341–347.CrossRefGoogle Scholar - Chaudhary, M. A., Merkin, J. H. and Pop, I. 1996 Natural convection from a horizontal permeable surface in a porous medium—Numerical and asymptotic solutions.
*Transport in Porous Media***22**, 327–344.CrossRefGoogle Scholar - Chelghoum, D. E., Weidman, P. D. and Kassoy, D. R. 1987 Effect of slab width on the stability of natural convection in confined saturated porous media.
*Phys. Fluids***30**, 1941–1947.CrossRefGoogle Scholar - Chellaiah, S. and Viskanta, R. 1987 Freezing of water and water-salt solutions around aluminum spheres.
*Int. Comm. Heat Mass Transfer***14**, 437–446.CrossRefGoogle Scholar - Chellaiah, S. and Viskanta, R. 1989a On the supercooling during freezing of water saturated porous media.
*Int. Comm. Heat Mass Transfer***16**, 163–172.CrossRefGoogle Scholar - Chen, C. F. 1995 Experimental study of convection in a mushy layer during directional solidification.
*J. Fluid Mech*.**293**, 81–98.CrossRefGoogle Scholar - Chen, C. H. 1996 Non-Darcy mixed convection from a horizontal surface with variable surface heat flux in a porous medium.
*Numer. Heat Transfer*A**30**, 859–869.Google Scholar - Chen, C. H. 1997a Non-Darcy mixed convection over a vertical flat plate in porous media with variable wall heat flux.
*Int. Comm. Heat Mass Transfer***24**, 427–437.CrossRefGoogle Scholar - Chen, C. H. 1997b Analysis of non-Darcian mixed convection from impermeable horizontal surfaces in porous media: The entire regime.
*Int. J. Heat Mass Transfer***40**, 2993–2997.MATHCrossRefGoogle Scholar - Chen, C. K. and Chen, C. H. 1990b Nonuniform porosity and non-Darcian effects on conjugate mixed convection heat transfer from a plate fin in porous media.
*Int. J. Heat Fluid Flow*, 65–71.Google Scholar**11** - Chen, C. K. and Chen, C. H. 1991 Non-Darcian effects on conjugate mixed convection about a vertical circular pin in a porous medium.
*Comput. Struct*.**38**, 529–535.MATHCrossRefGoogle Scholar - Chen, C. K. and Lin, C. R. 1995 Natural convection from an isothermal vertical surface embedded in a thermally stratified high-porosity medium.
*Int. J. Engng Sci*.**33**, 131–138.MATHCrossRefGoogle Scholar - Chen, C. K., Chen, C. H., Minkowycz, W. J. and Gill, U. S. 1992 Non-Darcian effects on mixed convection about a vertical cylinder embedded in a saturated porous medium.
*Int. J. Heat Mass Transfer***35**, 3041–3046.CrossRefGoogle Scholar - Chen, C. K., Hung, C. I. and Horng, H. C. 1987 Transient natural convection on a vertical flat plate embedded in a high-porosity medium.
*ASME J. Energy Res. Tech*.**109**, 112–118.CrossRefGoogle Scholar - Chen, F. 1991 Throughflow effects on convective instability in superposed fluid and porous layers.
*J. Fluid Mech*.**231**, 113–133.MATHCrossRefGoogle Scholar - Chen, F. 1992 Salt-finger instability in an anisotropic and inhomogeneous porous substrate underlying a fluid layer.
*J. Appl. Phys*.**71**, 5222–5236.CrossRefGoogle Scholar - Chen, F. and Chen, C. F. 1988 Onset of finger convection in a horizontal porous layer underlying a fluid layer.
*ASME J. Heat Transfer***110**, 403–409.CrossRefGoogle Scholar - Chen, F. and Chen, C. F. 1989 Experimental investigation of convective stability in a superposed fluid and porous layer when heated from below.
*J. Fluid Mech*.**207**, 311–321.CrossRefGoogle Scholar - Chen, F. and Lu, J. W. 1991 Influence of viscosity variation on salt-finger instability in a fluid layer, a porous layer, and their superposition.
*J. Appl. Phys*.**70**, 4121–4131.CrossRefGoogle Scholar - Chen, F. and Lu, J. W. 1992a Variable viscosity effects on convective instability in superposed fluid and porous layers.
*Phys. Fluids***4**, 1936–1944.MATHCrossRefGoogle Scholar - Chen, F. and Lu, J. W. 1992b Onset of salt-finger convection in anisotropic and inhomogeneous porous media.
*Int. J. Heat Mass Transfer***35**, 3451–3464.CrossRefGoogle Scholar - Chen, F. and Wang, C. Y. 1993a Convective instability in a porous enclosure with a horizontal conducting baffle.
*ASME J. Heat Transfer***115**, 810–813.CrossRefGoogle Scholar - Chen, G. and Hadim, H. A. 1995 Numerical study of forced convection of a power-law fluid in a porous channel.
*ASME HTD***309**, 65–72.Google Scholar - Chen, G. and Hadim, H. A. 1998 Numerical study of non-Darcy forced convection in a packed bed saturated with a power-law fluid.
*J. Porous Media***1**, 147–157.MATHGoogle Scholar - Chen, H. T. and Chen, C. K. 1987 Natural convection of non-Newtonian fluids about a horizontal surface in a porous medium.
*ASME J. Energy Res. Tech*.**109**, 119–123.CrossRefGoogle Scholar - Chen, H. T. and Chen, C. K. 1988b Natural convection of a non-Newtonian fluid about a horizontal cylinder and a sphere in a porous medium.
*Int. Comm. Heat Mass Transfer***15**, 605–614.CrossRefGoogle Scholar - Chen, K. S. and Ho, J. R. 1986 Effects of flow inertia on vertical natural convection in saturated porous media.
*Int. J. Heat Mass Transfer***29**, 753–759.MATHCrossRefGoogle Scholar - Cheng, P. 1977a Constant surface heat flux solutions for porous layer flows.
*Lett. Heat Mass Transfer***4**, 119–128.CrossRefGoogle Scholar - Cheng, P. 1977b The influence of lateral mass flux on free convection boundary layers in a saturated porous medium.
*Int. J. Heat Mass Transfer***20**, 201–206.CrossRefGoogle Scholar - Cheng, P. 1982 Mixed convection about a horizontal cylinder and a sphere in a fluid saturated porous medium.
*Int. J. Heat Mass Transfer***25**, 1245–1247.MATHCrossRefGoogle Scholar - Cheng, P. 1985a Natural convection in a porous medium: External flows.
*Natural Convection: Fundamentals and Applications*(eds. S. Kakaç, W. Aung and R. Viskanta). Hemisphere, Washington, DC, pp. 475–513.Google Scholar - Cheng, P. 1985b Geothermal heat transfer.
*Handbook of Heat Transfer Applications*(eds. W. M. Rohsenow, J. P. Hartnett and E. N. Ganic), 2nd ed., McGraw-Hill, New York, Chapter 11.Google Scholar - Cheng, P. 1987 Wall effects on fluid flow and heat transfer in porous media.
*Proc. 1987 ASME JSME Thermal Engineering Joint Conf*. vol. 2, pp. 297–303.Google Scholar - Cheng, P. and Ali, C. L. 1981 An experimental investigation of free convection about an inclined surface in a porous medium.
*ASME 20th National Heat Transfer Conference*, Paper No. 81-HT-85.Google Scholar - Cheng, P. and Chang, I. D. 1976 On buoyancy induced flows in a saturated porous medium adjacent to impermeable horizontal surfaces.
*Int. J. Heat Mass Transfer***19**, 1267–1272.MATHCrossRefGoogle Scholar - Cheng, P. and Hsu, C. T. 1986a Fully developed, forced convective flow through an annular packed-sphere bed with wall effects.
*Int. J. Heat Mass Transfer***29**, 1843–1853.MATHCrossRefGoogle Scholar - Cheng, P. and Hsu, C. T. 1986b Applications of Van Driest’s mixing length theory to transverse thermal dispersion in forced convective flow through a packed bed.
*Int. Comm. Heat Mass Transfer***13**, 613–626.CrossRefGoogle Scholar - Cheng, P. and Hsu, C. T. 1998a The effective stagnant thermal conductivity of porous media with periodic structure.
*J. Porous Media*, to appear.Google Scholar - Cheng, P. and Pop, I. 1984 Transient free convection about a vertical flat plate imbedded in a porous medium.
*Int. J. Engng. Sci*.**22**, 253–264.MATHCrossRefGoogle Scholar - Cheng, P. and Teckchandani, L. 1977 Numerical solutions for transient heating and fluid withdrawal in a liquid-dominated geothermal reservoir.
*The Earth’s Crust*(ed.*J*. G. Heacock). Amer. Geophys. Union, Washington, DC, pp. 705–721.Google Scholar - Cheng, P. and Verma, A. K. 1981 The effect of subcooled liquid on film boiling about a vertical heated surface in a porous medium.
*Ina. J. Heat Mass Transfer***24**, 1151–1160.MATHCrossRefGoogle Scholar - Cheng, P. and Vortmeyer, D. 1988 Transverse thermal dispersion and wall channelling in a packed bed with forced convective flow.
*Chem. Engng. Sci*.**43**, 2523–2532.CrossRefGoogle Scholar - Cheng, P. and Zheng, T. M. 1986 Mixed convection in the thermal plume above a horizontal line source of heat in a porous medium of infinite extent.
*Heat Transfer*,*1986*. Hemisphere, Washington, DC vol. 5, pp. 2671–2675.Google Scholar - Cheng, P., Chui, D. K. and Kwok, L. P. 1982 Film boiling about two-dimensional and axisymmetric isothermal bodies of arbitrary shape in a porous medium.
*Int. J. Heat Mass Transfer***25**, 1247–1249.MATHCrossRefGoogle Scholar - Cheng, P., Hsu, C. T. and Chowdhury, A. 1988 Forced convection in the entrance region of a packed channel with asymmetric heating.
*ASME J. Heat Transfer*, 946–954.Google Scholar**110** - Cheng, P., Le, T. T. and Pop, I. 1985 Natural convection of a Darcian fluid about a cone.
*Int. Comm. Heat Mass Transfer***12**, 705–717.CrossRefGoogle Scholar - Chevalier, S., Bernard, D. and Grenet, J. P. 1996 Ètude expérimentale de la convection naturelle dans une couche poreuse inclinée limitée pardes frontiéres conductrices de la chaleur.
*C.R. Acad. Sci. Paris Sir. II***322**, 305–311.Google Scholar - Chhuon, B. and Caltagirone, J. P. 1979 Stability of a horizontal porous layer with timewise periodic boundary conditions.
*ASME J. Heat Transfer*, 244–248.Google Scholar**101** - Chiang, K. C. and Tsai, H. L. 1992 Interaction between shrinkage-induced fluid flow and natural convection during alloy solidification.
*Int. J. Heat Mass Transfer***35**, 1771–1778.CrossRefGoogle Scholar - Chikh, S., Boumedien, A., Bouhadef, K. and Lauriat, G. 1995a Analytical solution of non-Darcian forced convection in an annular duct partially filled with a porous medium.
*Int. J. Heat Mass Transfer***38**, 1543–1551.MATHCrossRefGoogle Scholar - Chikh, S., Boumedien, A., Bouhadef, K. and Lauriat, G. 1995b Non-Darcian forced convection analysis in an annulus partially filled with a porous material.
*Numer. Heat Transfer A***28**, 707–722.CrossRefGoogle Scholar - Choi, C. Y. and Kulacki, F. A. 1990 Non-Darcian effects on mixed convection in a vertical porous annulus.
*Heat Transfer*,*1990*. Hemisphere, New York, vol. 5, pp. 271–276.Google Scholar - Choi, C. Y. and Kulacki, F. A. 1992a Mixed convection in vertical porous channels and annuli.
*Heat and Mass Transfer in Porous Media*. (eds. M. Quintard and M. Todorovic). Elsevier, Amsterdam, pp. 61–98.Google Scholar - Achenbach, E. 1995 Heat and flow characteristics of packed beds.
*Exp. Thermal Fluid Sci*.**10**, 17–27.CrossRefGoogle Scholar - Adnani, P., Catton, I. and Abdou, M. A. 1995 Non-Darcian forced convection i n porous media with anisotropic dispersion.
*ASME J. Heat Transfer***117**, 447–451.CrossRefGoogle Scholar - Afzal, N. 1985 Two-dimensional buoyant plume in porous media: Higher-order effects.
*Int. J. Heat Mass Transfer***28**, 2029–2041.MATHCrossRefGoogle Scholar - Aidun, C. K. and Steen, P. H. 1987 Transition of oscillatory convective heat transfer in a fluid-saturated porous medium.
*AIAA J. Thermophys. Heat Transfer***1**, 268–273.CrossRefGoogle Scholar - Al-Nimr, M. A. and Darabseh, T. T. 1995 Analytical solution for transient laminar free convection in open-ended vertical concentric porous annuli.
*ASME J. Heat Transfer***117**, 762–764.CrossRefGoogle Scholar - Al-Nimr, M. A., Aldoss, T. and Naji, M. I. 1994a Transient forced convection in the entrance region of a porous tube.
*Canad. J. Chem. Engng*.**72**, 249–255.CrossRefGoogle Scholar - Al-Nimr, M. A., Aldoss, T. and Naji, M.
**I**. 1994b Transient forced convection in the entrance region of porous concentric annuli.*Canad. J. Chem. Engng*.**72**, 1092–1096.Google Scholar - Alavyoon, F. 1993 On natural convection in vertical porous enclosures due to prescribed fluxes of heat and mass at the vertical boundaries.
*Int. J. Heat Mass Transfer***36**, 2479–2498.MATHCrossRefGoogle Scholar - Aldoss, T. K., Jarrah, M. A. and Duwairi, H. M. 1994b Wall effect on mixed convection flow from horizontal surfaces with a variable heat flux.
*Canad. J. Chem. Engng*.**72**, 35–42.CrossRefGoogle Scholar - Aldoss, T. K., Alnimr, M. A., Jarrah, M. A. and Alshaer, B. J. 1995 Magnetohydrodynamic mixed convection from a vertical plate embedded in a porous medium.
*Numer. Heat Transfer A***28**, 635–645.CrossRefGoogle Scholar - Allain, C., Cloitre, M. and Mongruel, A. 1992 Scaling in flows driven by heat and mass convection in a porous medium.
*Europhys. Lett*.**20**, 313–318.CrossRefGoogle Scholar - Amari, B., Vasseur, P. and Bilgen, E. 1994 Natural convection of non-Newtonian fluids in a horizontal porous layer.
*Wärme-Stoffübertrag*.**29**, 185–193.CrossRefGoogle Scholar - Anderson, P. and Glasser, D. 1990 Thermal convection and surface temperatures i n porous media.
*Int. J. Heat Mass Transfer***33**, 1321–1330.Google Scholar - Angirasa, D. and Peterson, G.P. 1997 Natural convection heat transfer from an isothermal vertical surface to a fluid saturated thermally stratified porous medium.
*Int. J. Heat Mass Transfer***40**, 4329–4335.MATHCrossRefGoogle Scholar - Angirasa, D., Peterson, G. P. and Pop, I. 1997a Combined heat and mass transfer by natural convection in a saturated thermally stratified porous medium.
*Numer. Heat Transfer A***31**, 255–272.CrossRefGoogle Scholar - Antohe, B. V. and Lage, J. L. 1997b A general two-equation macroscopic turbulence model for incompressible flow in porous media.
*Int. J. Heat Mass Transfer***40**, 3013–3024.MATHCrossRefGoogle Scholar - Artem’eva, E. L. and Stroganova, E. V. 1987 Stability of a nonuniformly heated fluid in a porous horizontal layer.
*Fluid Dynamics***21**, 845–848.CrossRefGoogle Scholar - Asako, Y., Nakamura, H., Yamaguchi, Y. and Fagri, M. 1992 Three-dimensional natural convection in a vertical porous layer with a hexagonal honeycomb core.
*ASME J. Heat Transfer***114**, 924–927.CrossRefGoogle Scholar - Avroam, D. G. and Payatakes, A. C. 1995 Flow regimes and relative permeabilities during steady-state two-phase flow in porous media.
*J. Fluid Mech*.**293**, 207–236.MathSciNetCrossRefGoogle Scholar - Badr, H. M. and Pop, I. 1988 Combined convection from an isothermal horizontal rod buried in a porous medium.
*Int. J. Heat Mass Transfer***31**, 2527–2541.MATHCrossRefGoogle Scholar - Badr, H. M. and Pop, I. 1992 Effect of flow direction on mixed convection from a horizontal rod embedded in a porous medium.
*Trans. Can. Soc. Mech. Engng*.**16**, 267–290.Google Scholar

## Copyright information

© Springer Science+Business Media New York 1999