## Abstract

In this chapter we focus on the equation that expresses the first law of thermodynamics in a porous medium. We start with a simple situation in which the medium is isotropic, and where radiative effects, viscous dissipation, and the work done by pressure changes are negligible. Very shortly we shall assume that there is local thermal equilibrium so that *T* _{ s } = *T* _{ f } = *T*, where *T* _{ s } and *T* _{ f } are the temperatures of the solid and fluid phases, respectively. More complex situations will be considered in Section 6.5. Here we also assume that heat conduction in the solid and fluid phases takes place in parallel so that there is no net heat transfer from one phase to the other.

## Keywords

Porous Medium Direct Numerical Simulation Viscous Dissipation Thermal Boundary Condition Darcy Number## Preview

Unable to display preview. Download preview PDF.

## References

- Alavyoon, F. 1993 On natural convection in vertical porous enclosures due to prescribed fluxes of heat and mass at the vertical boundaries.
*Int. J. Heat Mass Transfer***36**, 2479–2498.MATHCrossRefGoogle Scholar - Alavyoon, F., Masuda, Y. and Kimura, S. 1994 On the natural convection in vertical porous enclosures due to opposing fluxes of heat and mass prescribed at the vertical walls.
*Int. J. Heat Mass Transfer***37**, 195–206.MATHCrossRefGoogle Scholar - Allain, C., Cloitre, M. and Mongruel, A. 1992 Scaling in flows driven by heat and mass convection in a porous medium.
*Europhys. Lett*.**20**, 313–318.CrossRefGoogle Scholar - Amari, B., Vasseur, P. and Bilgen, E. 1994 Natural convection of non-Newtonian fluids in a horizontal porous layer.
*Wärme-Stoffübertrag*.**29**, 185–193.CrossRefGoogle Scholar - Amberg, G. and Homsy, G. M. 1993 Nonlinear analysis of buoyant convection in binary solidification with application to channel formation.
*J. Fluid Mech*.**252**, 79–98.MATHCrossRefGoogle Scholar - Angirasa, D., Peterson, G. P. and Pop, I. 1997b Combined heat and mass transfer by natural convection with opposing buoyancy effects in a fluid saturated porous medium.
*Int. J. Heat Mass Transfer***40**, 2755–2773.MATHCrossRefGoogle Scholar - Ansari, A. and Daniels, P. G. 1993 Thermally driven tall cavity flows in porous media.
*Proc. Roy. Soc. London Ser. A***433**, 163–181.Google Scholar - Ansari, A. and Daniels, P. G. 1994 Thermally driven tall cavity flows in porous media: The convective regime.
*Proc. Roy. Soc. London Ser. A***444**, 375–388.MATHCrossRefGoogle Scholar - Antohe, B. V. and Lage, J. L. 1994 A dynamic thermal insulator: Inducing resonance within a fluid saturated porous medium heated periodically from the side.
*Int. J. Heat Mass Transfer***37**, 771–782.MATHCrossRefGoogle Scholar - Antohe, B. V. and Lage, J. L. 1996 Amplitude effect on convection induced by time-periodic heating.
*Int. J. Heat Mass Transfer***39**, 1121–1133.CrossRefGoogle Scholar - Antohe, B. V. and Lage, J. L. 1997a The Prandtl number effect on the optimum heating frequency of an enclosure filled with fluid or with a saturated porous medium.
*Int. J. Heat Mass Transfer***40**, 1313–1323.MATHCrossRefGoogle Scholar - Beck, J. L. 1972 Convection in a box of porous material saturated with fluid.
*Phys. Fluids***15**, 1377–1383.CrossRefGoogle Scholar - Beckermann, C. and Viskanta, R. 1987 Forced convection boundary layer flow and heat transfer along a flat plate embedded in a porous medium.
*Int. J. Heat Mass Transfer***30**, 1547–1551.CrossRefGoogle Scholar - Beckermann, C. and Viskanta, R. 1988a Natural convection solid/liquid phase change in porous media.
*Int. J. Heat Mass Transfer***31**, 35–46.CrossRefGoogle Scholar - Beckermann, C. and Viskanta, R. 1988b Double-diffusive convection during dendritic solidification of a binary mixture.
*Phys. Chem. Hydrodyn*.**10**, 195–213.Google Scholar - Chen, H. T. and Chen, C. K. 1988b Natural convection of a non-Newtonian fluid about a horizontal cylinder and a sphere in a porous medium.
*Int. Comm. Heat Mass Transfer***15**, 605–614.CrossRefGoogle Scholar - Chen, K. S. and Ho, J. R. 1986 Effects of flow inertia on vertical natural convection in saturated porous media.
*Int. J. Heat Mass Transfer***29**, 753–759.MATHCrossRefGoogle Scholar - Cheng, P. 1977a Constant surface heat flux solutions for porous layer flows.
*Lett. Heat Mass Transfer***4**, 119–128.CrossRefGoogle Scholar - Cheng, P. 1977b The influence of lateral mass flux on free convection boundary layers in a saturated porous medium.
*Int. J. Heat Mass Transfer***20**, 201–206.CrossRefGoogle Scholar - Boussinesq, J. 1903
*Théorie Analytique de la Chaleur*. Gauthier-Villars, Paris. vol. 2.Google Scholar - Bradean, R., Heggs, P. J., Ingham, D. B. and Pop, I. 1998 Convective heat flow from suddenly heated surfaces embedded in porous media.
*Transport Phenomena in Porous Media*(eds. D. B. Ingham and I. Pop). Elsevier, Amsterdam, pp. 411–438.Google Scholar - Bradean, R., Ingham, D. B., Heggs, P. J. and Pop, I. 1995a Buoyancy induced flow adjacent to a periodically heated and cooled horizontal surface in porous media.
*Int. J. Heat Mass Transfer***39**, 615–630.CrossRefGoogle Scholar - Buikis, A. and Ulanova, N. 1996 Modelling of non-isothermal gas flow through a heterogeneous medium.
*Int. J. Heat Mass Transfer***39**, 1743–1748.MATHCrossRefGoogle Scholar - Buonanno, G. and Carotenuto, A. 1997 The effective thermal conductivity of a porous medium with interconnected particles.
*Int. J. Heat Mass Transfer***40**, 393–405.MATHCrossRefGoogle Scholar - Charrier-Mojtabi, M. C., Karimi-Fard, M., Azaiez, M. and Mojtabi, A. 1998 Onset of a double-diffusive convective regime in a rectangular porous cavity.
*J. Porous Media***1**, 107–121.MATHGoogle Scholar - Charrier-Mojtabi, M. C., Mojtabi, A., Azaiez, M. and Labrosse, G. 1991 Numerical and experimental study of multicellular free convection flows in an annular porous pipe.
*Int. J. Heat Mass Transfer***34**, 3061–3074.MATHCrossRefGoogle Scholar - Chaudhary, M. A., Merkin, J. H. and Pop. I. 1995 Similarity solutions in free convection boundary-layer flows adjacent to vertical permeable surfaces in porous media: II Prescribed surface heat flux.
*Heat Mass Transfer***30**, 341–347.CrossRefGoogle Scholar - Chellaiah, S. and Viskanta, R. 1987 Freezing of water and water-salt solutions around aluminum spheres.
*Int. Comm. Heat Mass Transfer***14**, 437–446.CrossRefGoogle Scholar - Chellaiah, S. and Viskanta, R. 1989a On the supercooling during freezing of water saturated porous media.
*Int. Comm. Heat Mass Transfer***16**, 163–172.CrossRefGoogle Scholar - Chellaiah, S. and Viskanta, R. 1989b Freezing of water-saturated porous media in the presence of natural convection: Experiments and analysis.
*ASME J. Heat Transfer***111**, 424–432; Errata 648.Google Scholar - Chellaiah, S. and Viskanta, R. 1990 Natural convection melting of a frozen porous medium.
*Int. J. Heat Mass Transfer***33**, 887–899.CrossRefGoogle Scholar - Chen, C. F. 1995 Experimental study of convection in a mushy layer during directional solidification.
*J. Fluid Mech*.**293**, 81–98.CrossRefGoogle Scholar - Chen, C. H. 1996 Non-Darcy mixed convection from a horizontal surface with variable surface heat flux in a porous medium.
*Numer. Heat Transfer*A**30**, 859–869.Google Scholar - Kvernvold, O. and Tyvand, P. A. 1981 Dispersion effects on thermal convection in a Hele—Shaw cell.
*Int. J. Heat Mass Transfer***24**, 887–990.MATHCrossRefGoogle Scholar - Avroam, D. G. and Payatakes, A. C. 1995 Flow regimes and relative permeabilities during steady-state two-phase flow in porous media.
*J. Fluid Mech*.**293**, 207–236.MathSciNetCrossRefGoogle Scholar - Chou, F. C., Cheng, C. J. and Lien, W. Y. 1992a Analysis and experiment of nonDarcian convection in horizontal square packed-sphere channels.-2. Mixed convection.
*Int. J. Heat Mass Transfer***35**, 1197–1207.CrossRefGoogle Scholar - Chou, F. C., Chung, P. Y. and Cheng, C.
*J*. 1992b Effects of stagnant and dispersion conductivities on non-Darcian forced convection in square packed-sphere channels.*Canad. J. Chem. Engng*.**69**, 1401–1407.Google Scholar - Chou, F. C., Lin, W. Y. and Lin, S. H. 1992c Analysis and experiment of non-Darcian convection in horizontal square packed-sphere channels-1. Forced convection.
*Int. J. Heat Mass Transfer***35**, 195–205.CrossRefGoogle Scholar - Chou, F. C., Su, J. H. and Lien, S. S. 1994 A reevaluation of non-Darcian forced and mixed convection in cylindrical packed tubes.
*ASME.1. Heat Transfer***116**, 513–516.CrossRefGoogle Scholar - Christopher, D. M. and Wang, B. X. 1993 Non-Darcy natural convection around a horizontal cylinder buried near the surface of a fluid-saturated porous medium.
*Int. J. Heat Mass Transfer***36**, 3663–3669.MATHCrossRefGoogle Scholar - Christopher, D. M. and Wang, B. X. 1994 Natural convection melting around a horizontal cylinder buried in frozen water-saturated porous media.
*Heat Transfer*,*1994*. Inst. Chem. Engrs, Rugby, Vol. 4, pp. 19–24.Google Scholar - Grangeot, G., Quintard, M. and Whitaker, S. 1994 Heat transfer in packed beds: Interpretation of experiments in terms of one-and two-equation models.
*Heat Transfer**1994*, Inst. Chem. Engrs, Rugby, vol. 5, pp. 291–296.Google Scholar - Islam, M. R. 1992 Evolution of oscillatory and chaotic flows in mixed convection in porous media in the non-Darcy regime.
*Chaos, Solitons, Fractals***2**, 51–71.MATHCrossRefGoogle Scholar - Islam, M. R. 1993 Route to chaos in chemically enhanced thermal convection in porous media.
*Chem. Engng. Commun*.**124**, 77–95.MathSciNetCrossRefGoogle Scholar - Karcher, C. and Müller, U. 1995 Convection in a porous medium with solidification.
*Fluid Dyn. Res*.**15**, 25–42.MATHCrossRefGoogle Scholar - Karimi-Fard, M., Charrier-Mojtabi, M. C. and Vafai, K. 1997 Non-Darcian effects on double-diffusive convection within a porous medium.
*Numer. Heat Transfer A***31**, 837–852.CrossRefGoogle Scholar - Kassoy, D. R. and Cotte, B. 1985 The effects of sidewall heat loss on convection in a saturated porous vertical slab.
*J. Fluid Mech*.**152**, 361–378.MATHCrossRefGoogle Scholar - Kassoy, D. R. and Zebib, A. 1978 Convection fluid dynamics in a model of a fault zone in the Earth’s crust.
*J. Fluid Mech*.**88**, 769–792.MATHCrossRefGoogle Scholar - Katto, Y. and Masuoka, T. 1967 Criterion for the onset of convective flow in a fluid in a porous medium.
*Int. J. Heat Mass Transfer***10**, 297–309.CrossRefGoogle Scholar - Kauffman, S. A. 1993
*The Origins of Order: Self-Organization and Selection and Evolution*, Oxford University Press, London.Google Scholar - Bradean, R., Ingham, D. B., Heggs, P. J. and Pop, I. 1995b Free convection fluid flow due to a periodically heated and cooled vertical plate embedded in a porous media.
*Int. J. Heat Mass Transfer***39**, 2545–2557.CrossRefGoogle Scholar - Bradean, R., Ingham, D. B., Heggs, P. J. and Pop, I. 1996 Unsteady free convection from a horizontal surface embedded in a porous
*media. Proc. 2nd European Thermal-Sciences and 14th UIT Nat. Heat Transfer Conference*. Edizioni ETS, Pisa, vol. pp.**1**, 329–335.Google Scholar - Bradean, R., Ingham, D. B., Heggs, P. J. and Pop, I. 1997a The unsteady penetration of free convection flows caused by heating and cooling flat surfaces in a porous media.
*Int. J. Heat Mass Transfer***40**, 665–687.MATHCrossRefGoogle Scholar - Bradean, R., Ingham, D. B., Heggs, P. and Pop, I. 1997b Unsteady free convection adjacent to an impulsively heated horizontal circular cylinder in porous media.
*Numer. Heat Transfer*A**32**, 325–346.Google Scholar - Bradshaw, S., Glasser, D. and Brooks, K. 1991 Self-ignition and convection patterns in an infinite coal layer.
*Chem. Engng. Commun*.**105**, 255–278.CrossRefGoogle Scholar - Braester, C. and Vadasz, P. 1993 The effect of a weak heterogeneity of a porous medium on natural convection.
*J. Fluid Mech*.**254**, 345–362.MathSciNetMATHCrossRefGoogle Scholar - Brand, H. and Steinberg, V. 1983a Convective instabilities in binary mixtures in a porous medium.
*Physica A***119**, 327–338.MathSciNetCrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1988b Transient mixed convection in horizontal porous layer locally heated from below.
*ASME HTD***96**, vol. 2, 353–364.Google Scholar - Lai, F. C. and Kulacki, F. A. 1988c Natural convection across a vertical layered porous cavity.
*Int. J. Heat Mass Transfer***31**, 1247–1260.CrossRefGoogle Scholar - Pop, I., Lesnic, D. and Ingham, D. B. 1995b Conjugate mixed convection on a vertical surface in a porous medium.
*Int. J. Heat Mass Transfer***38**, 1517–1525.MATHCrossRefGoogle Scholar - Pop, I., Rees, D. A. S. and Storesletten, L. 1998 Free convection in a shallow annular cavity filled with a porous medium.
*J. Porous Media*, 227–241.Google Scholar - Pop, I., Ingham, D.
**B**., Heggs, P. J. and Gardner, D. 1986 Conjugate heat transfer from a downward projecting fin immersed in a porous medium.*Heat Transfer*,*1986*. Hemisphere, Washington, DC, vol. 5, pp. 2635–2640.Google Scholar - Pop, I., Sunada, J. K., Cheng, P. and Minkowycz, W. J. 1985 Conjugate free convection from long vertical plate fins embedded in a porous medium at high Rayleigh numbers.
*Int. J. Heat Mass Transfer***28**, 1629–1636.CrossRefGoogle Scholar - Poulikakos, D. 1984 Maximum density effects on natural convection in a porous layer differentially heated in the horizontal direction.
*Int. J. Heat Mass Transfer***27**, 2067–2075.MATHCrossRefGoogle Scholar - Chellaiah, S. and Viskanta, R. 1987 Freezing of water and water-salt solutions around aluminum spheres.
*Int. Comm. Heat Mass Transfer***14**, 437–446.CrossRefGoogle Scholar - Rees, D. A. S. and Riley, D. S. 1990 The three-dimensionality of finite-amplitude convection in a layered porous medium heated from below.
*J. Fluid Mech*.**211**, 437–461.MathSciNetMATHCrossRefGoogle Scholar - Easterday, O. T., Wang, C. Y. and Cheng, P. 1995 A numerical and experimental study of two-phase flow and heat transfer in a porous formation with localized heating from below.
*ASME HTD***321**, 723–732.Google Scholar - Ebinuma, C. D. and Nakayama, A. 1990a Non-Darcy transient and steady film condensation in a porous medium.
*Int. Comm. Heat Mass Transfer***17**, 49–58.CrossRefGoogle Scholar - Daniels, P. G., Simpkins, P. G. and Blythe, P. A. 1989 Thermally driven shallow cavity flows in porous media: The merged layer regime.
*Proc. Roy. Soc. London Ser. A***426**, 107–124.MathSciNetMATHCrossRefGoogle Scholar - Darcy, H. P. G. 1856
*Les Fontaines Publiques de la Ville de Dijon*. Victor Dalmont, Paris.Google Scholar - David, E., Lauriat, G. and Cheng, P. 1988 Natural convection in rectangular cavities filled with variable porosity media.
*ASME HTD***96**, Vol. 1, 605–612.Google Scholar - David, E., Lauriat, G. and Cheng, P. 1991 A numerical solution of variable porosity effects on natural convection in a packed-sphere cavity.
*ASME J. Heat Transfer***113**, 391–399.CrossRefGoogle Scholar - David, E., Lauriat, G. and Prasad, V. 1989 Non-Darcy natural convection in packed-sphere beds between concentric vertical cylinders.
*AIChE Sympos. Ser*.**269**, 90–95.Google Scholar - Davis, A. M. J. and James, D. F. 1996 Slow flow through a model porous medium.
*Int. J. Multiphase Flow***22**, 969–989.MATHCrossRefGoogle Scholar - Davis, S. H., Rosenblat, S., Wood, J. R. and Hewitt, T. A. 1985 Convective fluid flow and diagenetic patterns in domed sheets.
*Amer. J. Sci*.**285**, 207–223.CrossRefGoogle Scholar - Dawood, A. S. and Burns, P. J. 1992 Steady three-dimensional convective heat transfer in a porous box via multigrid.
*Numer. Heat Transfer A***22**, 167–198.CrossRefGoogle Scholar - De la Torre Juarez, M. and Busse, F. H. 1995 Stability of two-dimensional convection in a fluid-saturated porous medium.
*J. Fluid Mech*.**292**, 305–323.MathSciNetCrossRefGoogle Scholar - Debeda, V., Caltagirone, J. P. and Watremez, P. 1995 Local multigrid refinement method for natural convection in fissured porous media.
*Numer. Heat Transfer B***28**, 455–467.CrossRefGoogle Scholar - Chang, W. J. and Jang, J. Y. 1989b Inertia effects on vortex instability of a horizontal natural convection flow in a saturated porous medium.
*Int. J. Heat Mass Transfer***32**, 541–550.CrossRefGoogle Scholar - Chang, W. J. and Lin, H. C. 1994a Wall heat conduction effect on natural convection in an enclosure filled with a non-Darcian porous medium.
*Numer. Heat Transfer A***25**, 671–684.CrossRefGoogle Scholar - Chang, W. J. and Lin, H. C. 1994b Natural convection in a finite wall rectangular cavity filled with an anisotropic porous medium.
*Int. J. Heat Mass Transfer***37**, 303–312.MATHCrossRefGoogle Scholar - Chang, W. J. and Yang, D. F. 1995 Transient natural convection of water near its density extremum in a rectangular cavity filled with porous medium.
*Numer. Heat Transfer*A**28**, 619–633.Google Scholar - Firdaouss, M., Guermond, J. L. and Le Quéré, P. 1997 Nonlinear corrections to Darcy’s law at low Reynolds number.
*J. Fluid Mech*.**343**, 331–350.MathSciNetMATHCrossRefGoogle Scholar - Forchheimer, P. 1901 Wasserbewegung durch Boden.
*Z. Vereines Deutscher Ingenieure***45**, 1736–1741 and 1781–1788.Google Scholar - Fowler, A. C. 1985 The formation of freckles in binary alloys.
*IMA J. Appl. Math*.**35**, 159–174.MATHCrossRefGoogle Scholar - Orozco, J., Stellman, R. and Gutjahr, M. 1988 Film boiling heat transfer from a sphere and a horizontal cylinder embedded in a liquid-saturated porous medium.
*ASME J. Heat Transfer***110**, 961–967.CrossRefGoogle Scholar - Ouarzazi, M. N. and Bois, P. A. 1994 Convective instability of a fluid mixture in a porous medium with time-dependent temperature gradient.
*European J. Mech. B/Fluids***13**, 275–295.MathSciNetGoogle Scholar - Ouarzazi, M. N., Bois, P. A. and Taki, M. 1994 Nonlinear interaction of convective instabilities and temporal chaos of a fluid mixture in a porous medium.
*European J. Mech. B/Fluids***13**, 423–438.MathSciNetMATHGoogle Scholar - Palm, E. 1990 Rayleigh convection, mass transport, and change in porosity in layers of sandstone.
*J. Geophys. Res*.**95**, 8675–8679.CrossRefGoogle Scholar - Palm, E. and Tveitereid, M. 1979 On heat and mass flux through dry snow.
*J. Geophys. Res*.**84**, 745–749.CrossRefGoogle Scholar - Palm, E. and Tyvand, P. 1984 Thermal convection in a rotating porous layer.
*J. Appl. Math. Phys. (ZAMP)*,**35**, 122–123.MATHCrossRefGoogle Scholar - Sayre, T. L. and Riahi, D. N. 1996 Effect of rotation on flow instabilities during solidification of a binary alloy.
*Int. J. Engng. Sci*.**34**, 1631–1645.MATHCrossRefGoogle Scholar - Sayre, T. L. and Riahi, D. N. 1997 Oscillatory instabilities of the liquid and mushy layers during solidification of alloys under rotational constraint.
*Acta Mech*.**121**, 143–152.MATHCrossRefGoogle Scholar - Scheidegger, A. E. 1974
*The Physics of Flow through Porous Media*. University of Toronto Press, Toronto.Google Scholar - Schneider, K. J. 1963 Investigation on the influence of free thermal convection on heat transfer through granular material.
*Proc. 11th Int. Cong. of Refrigeration*. Pergamon Press, Oxford, Paper 11–4, pp. 247–253.Google Scholar - Sinha, S. K., Sundararajan, T. and Garg, V. K. 1992 A variable property analysis of alloy solidification using the anisotropic porous medium approach.
*Int. J. Heat Mass Transfer***35**, 2865–2877.MATHCrossRefGoogle Scholar - Sinha, S. K., Sundararajan, T. and Garg, V. K. 1993 A study of the effects of macrosegregation and buoyancy-driven flow in binary mixture solidification.
*Int. J. Heat Mass Transfer***36**, 2349–2358.MATHCrossRefGoogle Scholar - Sokolov, V. E. 1982
*Mammal Skin*. University of California Press, Berkeley, CA.Google Scholar - Somerton, C. W. 1983 The Prandtl number effect in porous layer convection.
*Appl. Sci. Res*.**40**, 333–344.MATHCrossRefGoogle Scholar - Somerton, C. W. and Catton, I. 1982 On the thermal instability of superimposed porous and fluid layers.
*ASME J. Heat Transfer**104*, 160–165.CrossRefGoogle Scholar - Somerton, C. W., McDonough, J. M. and Catton, I. 1984 Natural convection in a volumetrically heated porous layer.
*ASME J. Heat Transfer***106**, 241–244.CrossRefGoogle Scholar - Sommerfeld, R. A. and Rocchio, J. E. 1993 A study of the effects of macrosegregation and buoyancy-driven flow in binary mixture solidification.
*Water Resources Res*.**29**, 2485–2490.CrossRefGoogle Scholar - Chen, F. and Chen, C. F. 1988 Onset of finger convection in a horizontal porous layer underlying a fluid layer.
*ASME J. Heat Transfer***110**, 403–409.CrossRefGoogle Scholar - Chen, F. and Chen, C. F. 1989 Experimental investigation of convective stability in a superposed fluid and porous layer when heated from below.
*J. Fluid Mech*.**207**, 311–321.CrossRefGoogle Scholar - Chen, F. and Chen, C. F. 1992 Convection in superposed fluid and porous layers.
*J. Fluid Mech*.**234**, 97–119.MATHCrossRefGoogle Scholar - Chen, F. and Chen, C. F. 1993 Double-diffusive fingering convection in a porous medium.
*Int. J. Heat Mass Transfer***36**, 793–807.MATHCrossRefGoogle Scholar - Chen, F. and Hsu, L. H. 1991 Onset of thermal convection in an anisotropic and inhomogeneous porous layer underlying a fluid layer.
*J. Appl. Phys*.**69**, 6289–6301.CrossRefGoogle Scholar - Bodvarsson, G. S., Pruess, K. and Lippmann, M. J. 1986 Modeling of geothermal systems.
*J. Petrol. Tech*.**38**, 1007–1021.Google Scholar - Bories, S. 1970a Sur les méchanismes fondamentaux de la convection naturelle en milieu poreux.
*Rev. Gin. Thermique***9**, 1377–1401.Google Scholar - Bories, S. 1970b Comparaison des prévisions d’une théorie non linéaire et des résultats expérimentaux en convection naturelle dans une couche poreuse saturée horizontale.
*C. R. Acad. Sci. Paris Sér. B***271**, 269–272.Google Scholar - Bories, S. A. 1987 Natural convection in porous media.
*Advances in Transport Phenomena in Porous Media*(eds. J. Bear and M. Y. Corapcioglu). Martinus Nijhoff, Amsterdam, The Netherlands, pp. 77–141.Google Scholar - Bories, S. A. 1991 Fundamentals of drying of capillary-porous bodies.
*Convective Heat and Mass Transfer in Porous Media*(eds. S. Kakaç, B. Kilkis, F. A. Kulacki, and F. Arinç). Kluwer Academic, Dordrecht, pp. 391–434.Google Scholar - Bories, S. 1993 Convection naturelle dans une couche porous inclineé. Sélection du nombre d’onde des configurations d’écoulements. C.
*R. Acad. Sci. Paris Sér. II***316**, 151–156.MATHGoogle Scholar - Bories, S. A. and Combarnous, M. A. 1973 Natural convection in a sloping porous layer.
*J. Fluid Mech*.**57**, 63–79.MATHCrossRefGoogle Scholar - Bories, S. and Deltour, A. 1980 Influence des conditions aux limites sur la convection naturelle dans un volume poreux cylindrique.
*Int. J. Heat Mass Transfer***23**, 765–771.MATHCrossRefGoogle Scholar - Bories, S. and Thirriot, C. 1969 Échanges thermiques et tourbillons dans une couche poreuse horizontale.
*La Houille Blanche***24**, 237–245.CrossRefGoogle Scholar - Bartlett, R. F. and Viskanta, R. 1996 Enhancement of forced convection in an asymmetrically heated duct filled with high thermal conductivity porous media.
*J. Enhanced Heat Transfer***3**, 291–299.Google Scholar - Worster, M. G. 1992 Instabilities of the liquid and mushy regions during solidification of alloys.
*J. Fluid Mech*.,**237**, 649–359.MATHCrossRefGoogle Scholar - Worster, M. G. 1997 Convection in mushy layers.
*Ann. Rev. Fluid Mech*.**29**, 91–122.MathSciNetCrossRefGoogle Scholar - Worster, M. G. and Kerr, R. C. 1994 The transient behavior of alloys solidified from below prior to the formation of chimneys.
*J. Fluid Mech*.**269**, 23–44.CrossRefGoogle Scholar