Advertisement

Heat Transfer Through a Porous Medium

  • Donald A. Nield
  • Adrian Bejan

Abstract

In this chapter we focus on the equation that expresses the first law of thermodynamics in a porous medium. We start with a simple situation in which the medium is isotropic, and where radiative effects, viscous dissipation, and the work done by pressure changes are negligible. Very shortly we shall assume that there is local thermal equilibrium so that T s = T f = T, where T s and T f are the temperatures of the solid and fluid phases, respectively. More complex situations will be considered in Section 6.5. Here we also assume that heat conduction in the solid and fluid phases takes place in parallel so that there is no net heat transfer from one phase to the other.

Keywords

Porous Medium Direct Numerical Simulation Viscous Dissipation Thermal Boundary Condition Darcy Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alavyoon, F. 1993 On natural convection in vertical porous enclosures due to prescribed fluxes of heat and mass at the vertical boundaries. Int. J. Heat Mass Transfer 36, 2479–2498.MATHCrossRefGoogle Scholar
  2. Alavyoon, F., Masuda, Y. and Kimura, S. 1994 On the natural convection in vertical porous enclosures due to opposing fluxes of heat and mass prescribed at the vertical walls. Int. J. Heat Mass Transfer 37, 195–206.MATHCrossRefGoogle Scholar
  3. Allain, C., Cloitre, M. and Mongruel, A. 1992 Scaling in flows driven by heat and mass convection in a porous medium. Europhys. Lett. 20, 313–318.CrossRefGoogle Scholar
  4. Amari, B., Vasseur, P. and Bilgen, E. 1994 Natural convection of non-Newtonian fluids in a horizontal porous layer. Wärme-Stoffübertrag. 29, 185–193.CrossRefGoogle Scholar
  5. Amberg, G. and Homsy, G. M. 1993 Nonlinear analysis of buoyant convection in binary solidification with application to channel formation. J. Fluid Mech. 252, 79–98.MATHCrossRefGoogle Scholar
  6. Angirasa, D., Peterson, G. P. and Pop, I. 1997b Combined heat and mass transfer by natural convection with opposing buoyancy effects in a fluid saturated porous medium. Int. J. Heat Mass Transfer 40, 2755–2773.MATHCrossRefGoogle Scholar
  7. Ansari, A. and Daniels, P. G. 1993 Thermally driven tall cavity flows in porous media. Proc. Roy. Soc. London Ser. A 433, 163–181.Google Scholar
  8. Ansari, A. and Daniels, P. G. 1994 Thermally driven tall cavity flows in porous media: The convective regime. Proc. Roy. Soc. London Ser. A 444, 375–388.MATHCrossRefGoogle Scholar
  9. Antohe, B. V. and Lage, J. L. 1994 A dynamic thermal insulator: Inducing resonance within a fluid saturated porous medium heated periodically from the side. Int. J. Heat Mass Transfer 37, 771–782.MATHCrossRefGoogle Scholar
  10. Antohe, B. V. and Lage, J. L. 1996 Amplitude effect on convection induced by time-periodic heating. Int. J. Heat Mass Transfer 39, 1121–1133.CrossRefGoogle Scholar
  11. Antohe, B. V. and Lage, J. L. 1997a The Prandtl number effect on the optimum heating frequency of an enclosure filled with fluid or with a saturated porous medium. Int. J. Heat Mass Transfer 40, 1313–1323.MATHCrossRefGoogle Scholar
  12. Beck, J. L. 1972 Convection in a box of porous material saturated with fluid. Phys. Fluids 15, 1377–1383.CrossRefGoogle Scholar
  13. Beckermann, C. and Viskanta, R. 1987 Forced convection boundary layer flow and heat transfer along a flat plate embedded in a porous medium. Int. J. Heat Mass Transfer 30, 1547–1551.CrossRefGoogle Scholar
  14. Beckermann, C. and Viskanta, R. 1988a Natural convection solid/liquid phase change in porous media. Int. J. Heat Mass Transfer 31, 35–46.CrossRefGoogle Scholar
  15. Beckermann, C. and Viskanta, R. 1988b Double-diffusive convection during dendritic solidification of a binary mixture. Phys. Chem. Hydrodyn. 10, 195–213.Google Scholar
  16. Chen, H. T. and Chen, C. K. 1988b Natural convection of a non-Newtonian fluid about a horizontal cylinder and a sphere in a porous medium. Int. Comm. Heat Mass Transfer 15, 605–614.CrossRefGoogle Scholar
  17. Chen, K. S. and Ho, J. R. 1986 Effects of flow inertia on vertical natural convection in saturated porous media. Int. J. Heat Mass Transfer 29, 753–759.MATHCrossRefGoogle Scholar
  18. Cheng, P. 1977a Constant surface heat flux solutions for porous layer flows. Lett. Heat Mass Transfer 4, 119–128.CrossRefGoogle Scholar
  19. Cheng, P. 1977b The influence of lateral mass flux on free convection boundary layers in a saturated porous medium. Int. J. Heat Mass Transfer 20, 201–206.CrossRefGoogle Scholar
  20. Boussinesq, J. 1903 Théorie Analytique de la Chaleur. Gauthier-Villars, Paris. vol. 2.Google Scholar
  21. Bradean, R., Heggs, P. J., Ingham, D. B. and Pop, I. 1998 Convective heat flow from suddenly heated surfaces embedded in porous media. Transport Phenomena in Porous Media (eds. D. B. Ingham and I. Pop). Elsevier, Amsterdam, pp. 411–438.Google Scholar
  22. Bradean, R., Ingham, D. B., Heggs, P. J. and Pop, I. 1995a Buoyancy induced flow adjacent to a periodically heated and cooled horizontal surface in porous media. Int. J. Heat Mass Transfer 39, 615–630.CrossRefGoogle Scholar
  23. Buikis, A. and Ulanova, N. 1996 Modelling of non-isothermal gas flow through a heterogeneous medium. Int. J. Heat Mass Transfer 39, 1743–1748.MATHCrossRefGoogle Scholar
  24. Buonanno, G. and Carotenuto, A. 1997 The effective thermal conductivity of a porous medium with interconnected particles. Int. J. Heat Mass Transfer 40, 393–405.MATHCrossRefGoogle Scholar
  25. Charrier-Mojtabi, M. C., Karimi-Fard, M., Azaiez, M. and Mojtabi, A. 1998 Onset of a double-diffusive convective regime in a rectangular porous cavity. J. Porous Media 1, 107–121.MATHGoogle Scholar
  26. Charrier-Mojtabi, M. C., Mojtabi, A., Azaiez, M. and Labrosse, G. 1991 Numerical and experimental study of multicellular free convection flows in an annular porous pipe. Int. J. Heat Mass Transfer 34, 3061–3074.MATHCrossRefGoogle Scholar
  27. Chaudhary, M. A., Merkin, J. H. and Pop. I. 1995 Similarity solutions in free convection boundary-layer flows adjacent to vertical permeable surfaces in porous media: II Prescribed surface heat flux. Heat Mass Transfer 30, 341–347.CrossRefGoogle Scholar
  28. Chellaiah, S. and Viskanta, R. 1987 Freezing of water and water-salt solutions around aluminum spheres. Int. Comm. Heat Mass Transfer 14, 437–446.CrossRefGoogle Scholar
  29. Chellaiah, S. and Viskanta, R. 1989a On the supercooling during freezing of water saturated porous media. Int. Comm. Heat Mass Transfer 16, 163–172.CrossRefGoogle Scholar
  30. Chellaiah, S. and Viskanta, R. 1989b Freezing of water-saturated porous media in the presence of natural convection: Experiments and analysis. ASME J. Heat Transfer 111, 424–432; Errata 648.Google Scholar
  31. Chellaiah, S. and Viskanta, R. 1990 Natural convection melting of a frozen porous medium. Int. J. Heat Mass Transfer 33, 887–899.CrossRefGoogle Scholar
  32. Chen, C. F. 1995 Experimental study of convection in a mushy layer during directional solidification. J. Fluid Mech. 293, 81–98.CrossRefGoogle Scholar
  33. Chen, C. H. 1996 Non-Darcy mixed convection from a horizontal surface with variable surface heat flux in a porous medium. Numer. Heat Transfer A 30, 859–869.Google Scholar
  34. Kvernvold, O. and Tyvand, P. A. 1981 Dispersion effects on thermal convection in a Hele—Shaw cell. Int. J. Heat Mass Transfer 24, 887–990.MATHCrossRefGoogle Scholar
  35. Avroam, D. G. and Payatakes, A. C. 1995 Flow regimes and relative permeabilities during steady-state two-phase flow in porous media. J. Fluid Mech. 293, 207–236.MathSciNetCrossRefGoogle Scholar
  36. Chou, F. C., Cheng, C. J. and Lien, W. Y. 1992a Analysis and experiment of nonDarcian convection in horizontal square packed-sphere channels.-2. Mixed convection. Int. J. Heat Mass Transfer 35, 1197–1207.CrossRefGoogle Scholar
  37. Chou, F. C., Chung, P. Y. and Cheng, C. J. 1992b Effects of stagnant and dispersion conductivities on non-Darcian forced convection in square packed-sphere channels. Canad. J. Chem. Engng. 69, 1401–1407.Google Scholar
  38. Chou, F. C., Lin, W. Y. and Lin, S. H. 1992c Analysis and experiment of non-Darcian convection in horizontal square packed-sphere channels-1. Forced convection. Int. J. Heat Mass Transfer 35, 195–205.CrossRefGoogle Scholar
  39. Chou, F. C., Su, J. H. and Lien, S. S. 1994 A reevaluation of non-Darcian forced and mixed convection in cylindrical packed tubes. ASME.1. Heat Transfer 116, 513–516.CrossRefGoogle Scholar
  40. Christopher, D. M. and Wang, B. X. 1993 Non-Darcy natural convection around a horizontal cylinder buried near the surface of a fluid-saturated porous medium. Int. J. Heat Mass Transfer 36, 3663–3669.MATHCrossRefGoogle Scholar
  41. Christopher, D. M. and Wang, B. X. 1994 Natural convection melting around a horizontal cylinder buried in frozen water-saturated porous media. Heat Transfer, 1994. Inst. Chem. Engrs, Rugby, Vol. 4, pp. 19–24.Google Scholar
  42. Grangeot, G., Quintard, M. and Whitaker, S. 1994 Heat transfer in packed beds: Interpretation of experiments in terms of one-and two-equation models. Heat Transfer 1994, Inst. Chem. Engrs, Rugby, vol. 5, pp. 291–296.Google Scholar
  43. Grant, M. A. 1983 Geothermal reservoir modeling. Geothermics 12, 251–263.CrossRefGoogle Scholar
  44. Islam, M. R. 1992 Evolution of oscillatory and chaotic flows in mixed convection in porous media in the non-Darcy regime. Chaos, Solitons, Fractals 2, 51–71.MATHCrossRefGoogle Scholar
  45. Islam, M. R. 1993 Route to chaos in chemically enhanced thermal convection in porous media. Chem. Engng. Commun. 124, 77–95.MathSciNetCrossRefGoogle Scholar
  46. Karcher, C. and Müller, U. 1995 Convection in a porous medium with solidification. Fluid Dyn. Res. 15, 25–42.MATHCrossRefGoogle Scholar
  47. Karimi-Fard, M., Charrier-Mojtabi, M. C. and Vafai, K. 1997 Non-Darcian effects on double-diffusive convection within a porous medium. Numer. Heat Transfer A 31, 837–852.CrossRefGoogle Scholar
  48. Kassoy, D. R. and Cotte, B. 1985 The effects of sidewall heat loss on convection in a saturated porous vertical slab. J. Fluid Mech. 152, 361–378.MATHCrossRefGoogle Scholar
  49. Kassoy, D. R. and Zebib, A. 1978 Convection fluid dynamics in a model of a fault zone in the Earth’s crust. J. Fluid Mech. 88, 769–792.MATHCrossRefGoogle Scholar
  50. Katto, Y. and Masuoka, T. 1967 Criterion for the onset of convective flow in a fluid in a porous medium. Int. J. Heat Mass Transfer 10, 297–309.CrossRefGoogle Scholar
  51. Kauffman, S. A. 1993 The Origins of Order: Self-Organization and Selection and Evolution, Oxford University Press, London.Google Scholar
  52. Bradean, R., Ingham, D. B., Heggs, P. J. and Pop, I. 1995b Free convection fluid flow due to a periodically heated and cooled vertical plate embedded in a porous media. Int. J. Heat Mass Transfer 39, 2545–2557.CrossRefGoogle Scholar
  53. Bradean, R., Ingham, D. B., Heggs, P. J. and Pop, I. 1996 Unsteady free convection from a horizontal surface embedded in a porous media. Proc. 2nd European Thermal-Sciences and 14th UIT Nat. Heat Transfer Conference. Edizioni ETS, Pisa, vol. pp. 1, 329–335.Google Scholar
  54. Bradean, R., Ingham, D. B., Heggs, P. J. and Pop, I. 1997a The unsteady penetration of free convection flows caused by heating and cooling flat surfaces in a porous media. Int. J. Heat Mass Transfer 40, 665–687.MATHCrossRefGoogle Scholar
  55. Bradean, R., Ingham, D. B., Heggs, P. and Pop, I. 1997b Unsteady free convection adjacent to an impulsively heated horizontal circular cylinder in porous media. Numer. Heat Transfer A 32, 325–346.Google Scholar
  56. Bradshaw, S., Glasser, D. and Brooks, K. 1991 Self-ignition and convection patterns in an infinite coal layer. Chem. Engng. Commun. 105, 255–278.CrossRefGoogle Scholar
  57. Braester, C. and Vadasz, P. 1993 The effect of a weak heterogeneity of a porous medium on natural convection. J. Fluid Mech. 254, 345–362.MathSciNetMATHCrossRefGoogle Scholar
  58. Brand, H. and Steinberg, V. 1983a Convective instabilities in binary mixtures in a porous medium. Physica A 119, 327–338.MathSciNetCrossRefGoogle Scholar
  59. Lai, F. C. and Kulacki, F. A. 1988b Transient mixed convection in horizontal porous layer locally heated from below. ASME HTD 96, vol. 2, 353–364.Google Scholar
  60. Lai, F. C. and Kulacki, F. A. 1988c Natural convection across a vertical layered porous cavity. Int. J. Heat Mass Transfer 31, 1247–1260.CrossRefGoogle Scholar
  61. Pop, I., Lesnic, D. and Ingham, D. B. 1995b Conjugate mixed convection on a vertical surface in a porous medium. Int. J. Heat Mass Transfer 38, 1517–1525.MATHCrossRefGoogle Scholar
  62. Pop, I., Rees, D. A. S. and Storesletten, L. 1998 Free convection in a shallow annular cavity filled with a porous medium. J. Porous Media, 227–241.Google Scholar
  63. Pop, I., Ingham, D. B., Heggs, P. J. and Gardner, D. 1986 Conjugate heat transfer from a downward projecting fin immersed in a porous medium. Heat Transfer, 1986. Hemisphere, Washington, DC, vol. 5, pp. 2635–2640.Google Scholar
  64. Pop, I., Sunada, J. K., Cheng, P. and Minkowycz, W. J. 1985 Conjugate free convection from long vertical plate fins embedded in a porous medium at high Rayleigh numbers. Int. J. Heat Mass Transfer 28, 1629–1636.CrossRefGoogle Scholar
  65. Poulikakos, D. 1984 Maximum density effects on natural convection in a porous layer differentially heated in the horizontal direction. Int. J. Heat Mass Transfer 27, 2067–2075.MATHCrossRefGoogle Scholar
  66. Chellaiah, S. and Viskanta, R. 1987 Freezing of water and water-salt solutions around aluminum spheres. Int. Comm. Heat Mass Transfer 14, 437–446.CrossRefGoogle Scholar
  67. Rees, D. A. S. and Riley, D. S. 1990 The three-dimensionality of finite-amplitude convection in a layered porous medium heated from below. J. Fluid Mech. 211, 437–461.MathSciNetMATHCrossRefGoogle Scholar
  68. Easterday, O. T., Wang, C. Y. and Cheng, P. 1995 A numerical and experimental study of two-phase flow and heat transfer in a porous formation with localized heating from below. ASME HTD 321, 723–732.Google Scholar
  69. Ebinuma, C. D. and Nakayama, A. 1990a Non-Darcy transient and steady film condensation in a porous medium. Int. Comm. Heat Mass Transfer 17, 49–58.CrossRefGoogle Scholar
  70. Daniels, P. G., Simpkins, P. G. and Blythe, P. A. 1989 Thermally driven shallow cavity flows in porous media: The merged layer regime. Proc. Roy. Soc. London Ser. A 426, 107–124.MathSciNetMATHCrossRefGoogle Scholar
  71. Darcy, H. P. G. 1856 Les Fontaines Publiques de la Ville de Dijon. Victor Dalmont, Paris.Google Scholar
  72. David, E., Lauriat, G. and Cheng, P. 1988 Natural convection in rectangular cavities filled with variable porosity media. ASME HTD 96, Vol. 1, 605–612.Google Scholar
  73. David, E., Lauriat, G. and Cheng, P. 1991 A numerical solution of variable porosity effects on natural convection in a packed-sphere cavity. ASME J. Heat Transfer 113, 391–399.CrossRefGoogle Scholar
  74. David, E., Lauriat, G. and Prasad, V. 1989 Non-Darcy natural convection in packed-sphere beds between concentric vertical cylinders. AIChE Sympos. Ser. 269, 90–95.Google Scholar
  75. Davis, A. M. J. and James, D. F. 1996 Slow flow through a model porous medium. Int. J. Multiphase Flow 22, 969–989.MATHCrossRefGoogle Scholar
  76. Davis, S. H., Rosenblat, S., Wood, J. R. and Hewitt, T. A. 1985 Convective fluid flow and diagenetic patterns in domed sheets. Amer. J. Sci. 285, 207–223.CrossRefGoogle Scholar
  77. Dawood, A. S. and Burns, P. J. 1992 Steady three-dimensional convective heat transfer in a porous box via multigrid. Numer. Heat Transfer A 22, 167–198.CrossRefGoogle Scholar
  78. De la Torre Juarez, M. and Busse, F. H. 1995 Stability of two-dimensional convection in a fluid-saturated porous medium. J. Fluid Mech. 292, 305–323.MathSciNetCrossRefGoogle Scholar
  79. Debeda, V., Caltagirone, J. P. and Watremez, P. 1995 Local multigrid refinement method for natural convection in fissured porous media. Numer. Heat Transfer B 28, 455–467.CrossRefGoogle Scholar
  80. Chang, W. J. and Jang, J. Y. 1989b Inertia effects on vortex instability of a horizontal natural convection flow in a saturated porous medium. Int. J. Heat Mass Transfer 32, 541–550.CrossRefGoogle Scholar
  81. Chang, W. J. and Lin, H. C. 1994a Wall heat conduction effect on natural convection in an enclosure filled with a non-Darcian porous medium. Numer. Heat Transfer A 25, 671–684.CrossRefGoogle Scholar
  82. Chang, W. J. and Lin, H. C. 1994b Natural convection in a finite wall rectangular cavity filled with an anisotropic porous medium. Int. J. Heat Mass Transfer 37, 303–312.MATHCrossRefGoogle Scholar
  83. Chang, W. J. and Yang, D. F. 1995 Transient natural convection of water near its density extremum in a rectangular cavity filled with porous medium. Numer. Heat Transfer A 28, 619–633.Google Scholar
  84. Firdaouss, M., Guermond, J. L. and Le Quéré, P. 1997 Nonlinear corrections to Darcy’s law at low Reynolds number. J. Fluid Mech. 343, 331–350.MathSciNetMATHCrossRefGoogle Scholar
  85. Forchheimer, P. 1901 Wasserbewegung durch Boden. Z. Vereines Deutscher Ingenieure 45, 1736–1741 and 1781–1788.Google Scholar
  86. Fowler, A. C. 1985 The formation of freckles in binary alloys. IMA J. Appl. Math. 35, 159–174.MATHCrossRefGoogle Scholar
  87. Orozco, J., Stellman, R. and Gutjahr, M. 1988 Film boiling heat transfer from a sphere and a horizontal cylinder embedded in a liquid-saturated porous medium. ASME J. Heat Transfer 110, 961–967.CrossRefGoogle Scholar
  88. Ouarzazi, M. N. and Bois, P. A. 1994 Convective instability of a fluid mixture in a porous medium with time-dependent temperature gradient. European J. Mech. B/Fluids 13, 275–295.MathSciNetGoogle Scholar
  89. Ouarzazi, M. N., Bois, P. A. and Taki, M. 1994 Nonlinear interaction of convective instabilities and temporal chaos of a fluid mixture in a porous medium. European J. Mech. B/Fluids 13, 423–438.MathSciNetMATHGoogle Scholar
  90. Palm, E. 1990 Rayleigh convection, mass transport, and change in porosity in layers of sandstone. J. Geophys. Res. 95, 8675–8679.CrossRefGoogle Scholar
  91. Palm, E. and Tveitereid, M. 1979 On heat and mass flux through dry snow. J. Geophys. Res. 84, 745–749.CrossRefGoogle Scholar
  92. Palm, E. and Tyvand, P. 1984 Thermal convection in a rotating porous layer. J. Appl. Math. Phys. (ZAMP), 35, 122–123.MATHCrossRefGoogle Scholar
  93. Sayre, T. L. and Riahi, D. N. 1996 Effect of rotation on flow instabilities during solidification of a binary alloy. Int. J. Engng. Sci. 34, 1631–1645.MATHCrossRefGoogle Scholar
  94. Sayre, T. L. and Riahi, D. N. 1997 Oscillatory instabilities of the liquid and mushy layers during solidification of alloys under rotational constraint. Acta Mech. 121, 143–152.MATHCrossRefGoogle Scholar
  95. Scheidegger, A. E. 1974 The Physics of Flow through Porous Media. University of Toronto Press, Toronto.Google Scholar
  96. Schneider, K. J. 1963 Investigation on the influence of free thermal convection on heat transfer through granular material. Proc. 11th Int. Cong. of Refrigeration. Pergamon Press, Oxford, Paper 11–4, pp. 247–253.Google Scholar
  97. Sinha, S. K., Sundararajan, T. and Garg, V. K. 1992 A variable property analysis of alloy solidification using the anisotropic porous medium approach. Int. J. Heat Mass Transfer 35, 2865–2877.MATHCrossRefGoogle Scholar
  98. Sinha, S. K., Sundararajan, T. and Garg, V. K. 1993 A study of the effects of macrosegregation and buoyancy-driven flow in binary mixture solidification. Int. J. Heat Mass Transfer 36, 2349–2358.MATHCrossRefGoogle Scholar
  99. Sokolov, V. E. 1982 Mammal Skin. University of California Press, Berkeley, CA.Google Scholar
  100. Somerton, C. W. 1983 The Prandtl number effect in porous layer convection. Appl. Sci. Res. 40, 333–344.MATHCrossRefGoogle Scholar
  101. Somerton, C. W. and Catton, I. 1982 On the thermal instability of superimposed porous and fluid layers. ASME J. Heat Transfer 104, 160–165.CrossRefGoogle Scholar
  102. Somerton, C. W., McDonough, J. M. and Catton, I. 1984 Natural convection in a volumetrically heated porous layer. ASME J. Heat Transfer 106, 241–244.CrossRefGoogle Scholar
  103. Sommerfeld, R. A. and Rocchio, J. E. 1993 A study of the effects of macrosegregation and buoyancy-driven flow in binary mixture solidification. Water Resources Res. 29, 2485–2490.CrossRefGoogle Scholar
  104. Chen, F. and Chen, C. F. 1988 Onset of finger convection in a horizontal porous layer underlying a fluid layer. ASME J. Heat Transfer 110, 403–409.CrossRefGoogle Scholar
  105. Chen, F. and Chen, C. F. 1989 Experimental investigation of convective stability in a superposed fluid and porous layer when heated from below. J. Fluid Mech. 207, 311–321.CrossRefGoogle Scholar
  106. Chen, F. and Chen, C. F. 1992 Convection in superposed fluid and porous layers. J. Fluid Mech. 234, 97–119.MATHCrossRefGoogle Scholar
  107. Chen, F. and Chen, C. F. 1993 Double-diffusive fingering convection in a porous medium. Int. J. Heat Mass Transfer 36, 793–807.MATHCrossRefGoogle Scholar
  108. Chen, F. and Hsu, L. H. 1991 Onset of thermal convection in an anisotropic and inhomogeneous porous layer underlying a fluid layer. J. Appl. Phys. 69, 6289–6301.CrossRefGoogle Scholar
  109. Bodvarsson, G. S., Pruess, K. and Lippmann, M. J. 1986 Modeling of geothermal systems. J. Petrol. Tech. 38, 1007–1021.Google Scholar
  110. Bories, S. 1970a Sur les méchanismes fondamentaux de la convection naturelle en milieu poreux. Rev. Gin. Thermique 9, 1377–1401.Google Scholar
  111. Bories, S. 1970b Comparaison des prévisions d’une théorie non linéaire et des résultats expérimentaux en convection naturelle dans une couche poreuse saturée horizontale. C. R. Acad. Sci. Paris Sér. B 271, 269–272.Google Scholar
  112. Bories, S. A. 1987 Natural convection in porous media. Advances in Transport Phenomena in Porous Media (eds. J. Bear and M. Y. Corapcioglu). Martinus Nijhoff, Amsterdam, The Netherlands, pp. 77–141.Google Scholar
  113. Bories, S. A. 1991 Fundamentals of drying of capillary-porous bodies. Convective Heat and Mass Transfer in Porous Media (eds. S. Kakaç, B. Kilkis, F. A. Kulacki, and F. Arinç). Kluwer Academic, Dordrecht, pp. 391–434.Google Scholar
  114. Bories, S. 1993 Convection naturelle dans une couche porous inclineé. Sélection du nombre d’onde des configurations d’écoulements. C. R. Acad. Sci. Paris Sér. II 316, 151–156.MATHGoogle Scholar
  115. Bories, S. A. and Combarnous, M. A. 1973 Natural convection in a sloping porous layer. J. Fluid Mech. 57, 63–79.MATHCrossRefGoogle Scholar
  116. Bories, S. and Deltour, A. 1980 Influence des conditions aux limites sur la convection naturelle dans un volume poreux cylindrique. Int. J. Heat Mass Transfer 23, 765–771.MATHCrossRefGoogle Scholar
  117. Bories, S. and Thirriot, C. 1969 Échanges thermiques et tourbillons dans une couche poreuse horizontale. La Houille Blanche 24, 237–245.CrossRefGoogle Scholar
  118. Bartlett, R. F. and Viskanta, R. 1996 Enhancement of forced convection in an asymmetrically heated duct filled with high thermal conductivity porous media. J. Enhanced Heat Transfer 3, 291–299.Google Scholar
  119. Worster, M. G. 1992 Instabilities of the liquid and mushy regions during solidification of alloys. J. Fluid Mech., 237, 649–359.MATHCrossRefGoogle Scholar
  120. Worster, M. G. 1997 Convection in mushy layers. Ann. Rev. Fluid Mech. 29, 91–122.MathSciNetCrossRefGoogle Scholar
  121. Worster, M. G. and Kerr, R. C. 1994 The transient behavior of alloys solidified from below prior to the formation of chimneys. J. Fluid Mech. 269, 23–44.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Donald A. Nield
    • 1
  • Adrian Bejan
    • 2
  1. 1.Department of Engineering ScienceUniversity of AucklandAucklandNew Zealand
  2. 2.Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA

Personalised recommendations