## Abstract

In the examples of forced and natural convection discussed until now, the fluid that flowed through the pores did not experience a change of phase, no matter how intense the heating or cooling effect. In the present chapter we turn our attention to situations in which a change of phase occurs, for example, melting or evaporation upon heating, and solidification or condensation upon cooling. These convection problems constitute a relatively new and active area in the field of convection in porous media.

## Keywords

Porous Medium Nusselt Number Natural Convection Rayleigh Number Heat Transfer Rate
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

- Afzal, N. 1985 Two-dimensional buoyant plume in porous media: Higher-order effects.
*Int. J. Heat Mass Transfer***28**, 2029–2041.MATHCrossRefGoogle Scholar - Angirasa, D. and Peterson, G.P. 1997 Natural convection heat transfer from an isothermal vertical surface to a fluid saturated thermally stratified porous medium.
*Int. J. Heat Mass Transfer***40**, 4329–4335.MATHCrossRefGoogle Scholar - Bejan, A. and Anderson, R. 1981 Heat transfer across a vertical impermeable partition imbedded in a porous medium.
*Int. J. Heat Mass Transfer***24**, 1237–1245.MATHCrossRefGoogle Scholar - Bejan, A. and Anderson, R. 1983 Natural convection at the interface between a vertical porous layer and an open space.
*ASME J. Heat Transfer***105**, 124–129.CrossRefGoogle Scholar - Bejan, A. and Nield, D. A. 1991 Transient forced convection near a suddenly heated plate in a porous medium.
*Int. Comm. Heat Mass Transfer***18**, 83–91.CrossRefGoogle Scholar - Braester, C. and Vadasz, P. 1993 The effect of a weak heterogeneity of a porous medium on natural convection.
*J. Fluid Mech*.**254**, 345–362.MathSciNetMATHCrossRefGoogle Scholar - Chelghoum, D. E., Weidman, P. D. and Kassoy, D. R. 1987 Effect of slab width on the stability of natural convection in confined saturated porous media.
*Phys. Fluids***30**, 1941–1947.CrossRefGoogle Scholar - Chellaiah, S. and Viskanta, R. 1987 Freezing of water and water-salt solutions around aluminum spheres.
*Int. Comm. Heat Mass Transfer***14**, 437–446.CrossRefGoogle Scholar - Chellaiah, S. and Viskanta, R. 1989a On the supercooling during freezing of water saturated porous media.
*Int. Comm. Heat Mass Transfer***16**, 163–172.CrossRefGoogle Scholar - Essome, G. R. and Orozco, J. 1991 An analysis of film boiling on a binary mixture in a porous medium.
*Int. J. Heat Mass Transfer***34**, 757–766.CrossRefGoogle Scholar - Ebinuma, C. D. and Nakayama, A. 1990b An exact solution for transient film condensation in a porous medium along a vertical surface with lateral mass flux.
*Int. Comm. Heat Mass Transfer***17**, 105–111.CrossRefGoogle Scholar - Echaniz, H. L. 1984 Oscillatory convection with boiling in a water-saturated porous medium. M.S. thesis, Cornell University.Google Scholar
- Egorov, S. D. and Poleshaev, V. I. 1993 Thermal convection in anisotropic porous insulation.
*Heat Transfer Res*.**25**, 968–990.Google Scholar - Ekholm, T. C. 1983 Studies of convection using a Hele-Shaw cell. Project Report, School of Engineering, University of Auckland, NZ.Google Scholar
- Gleason, K. J., Krantz, W. B., Caine, N., George, J. H. and Gunn, R. D. 1986 Geometrical aspects of sorted patterned ground in recurrently frozen soil.
*Science***232**, 216–220.CrossRefGoogle Scholar - Gorla, R. S. R. and Tornabene, R. 1988 Free convection from a vertical plate with nonuniform surface heat flux and embedded in a porous medium.
*Transport in Porous Media***3**, 95–105.CrossRefGoogle Scholar - Gorla, R. S. R. and Zinalabedini, A. H. 1987 Free convection from a vertical plate with nonuniform surface temperature and embedded in a porous medium.
*ASME J. Energy Res. Tech*.**109**, 27–30.Google Scholar - Gorla, R. S. R. and Kumari, M. 1996 Mixed convection in non-Newtonian fluids along a vertical plate in a porous medium.
*Acta Mech*.**118**, 55–64.MATHCrossRefGoogle Scholar - Gorla, R. S. R., Bakier, A. Y. and Byrd, L. 1996 Effects of thermal dispersion and stratification on combined convection on a vertical surface embedded in a porous medium.
*Transport Porous Media***25**, 275–282.CrossRefGoogle Scholar - Green, T. and Freehill, R. L. 1969 Marginal stability in inhomogeneous porous media.
*J. Appl. Phys*.**40**, 1759–1762.CrossRefGoogle Scholar - Hadim, A. and Burmeister, L. C. 1988 Onset of convection in a porous medium with internal heat generation and downward flow.
*AIAA J. Thermophys. Heat Transfer***2**, 343–351.CrossRefGoogle Scholar - Huang, P. C. and Vafai, K. 1993 Flow and heat transfer control over an external surface using a porous block array arrangement.
*Int. J. Heat Mass Transfer***36**, 4019–4032.MATHCrossRefGoogle Scholar - Kaloni, P. N. and Qiao, Z. 1997 Non-linear stability of convection in a porous medium with inclined temperature gradient.
*Int. J. Heat Mass Transfer***40**, 1611–1615.MATHCrossRefGoogle Scholar - Kamiuto, K. and Saitoh, S. 1994 Fully developed forced-convection heat transfer in cylindrical packed beds with constant wall temperatures.
*JSME Int. J. Series B***37**, 554–559.CrossRefGoogle Scholar - Kaneko, T., Mohtadi, M. F. and Aziz, K. 1974 An experimental study of natural convection in inclined porous media.
*Int. J. Heat Mass Transfer***17**, 485–496.CrossRefGoogle Scholar - Kuznetsov, A. V. 1997b Influence of the stress jump condition at the porousmedium/clear-fluid interface on a flow at a porous wall.
*Int. Comm. Heat Mass Transfer***24**, 401–410.CrossRefGoogle Scholar - Kuznetsov, A. V. 1997c Optimal control of the heat storage in a porous slab.
*Int. J. Heat Mass Transfer***40**, 1720–1723.MATHCrossRefGoogle Scholar - Kuznetsov, A. V. 1998 Thermal nonequilibrium forced convection in porous media.
*Transport Phenomena in Porous Media*(eds.**D**. B. Ingham and I. Pop). Elsevier, Amsterdam, pp. 103–130.Google Scholar - Lawson, M. L., Yang, W. J. and Bunditkul, S. 1976 Theory of thermal stability of binary gas mixtures in porous media.
*ASME J. Heat Transfer***98**, 35–41.CrossRefGoogle Scholar - Le Breton, P., Caltagirone, J. P. and Arquis, E. 1991 Natural convection in a square cavity with thin porous layers on its vertical walls.
*ASME J. Heat Transfer***113**, 892–898.CrossRefGoogle Scholar - Lebon, G. and Cloot, A. 1986 A thermodynamical modelling of fluid flows through porous media: Application to natural convection.
*Int. J. Heat Mass Transfer***29**, 381–390.MATHCrossRefGoogle Scholar - Ledezma, G. A., Bejan, A. and Errera, M. R. 1997 Constructal tree networks for heat transfer.
*J. Appl. Phys*.**82**, 89–100.CrossRefGoogle Scholar - Ledezma, G., Morega, A. M. and Bejan, A. 1996 Optimal spacing between fins with impinging flow.
*J. Heat Transfer***118**, 570–577.CrossRefGoogle Scholar - Mei, C. C., Auriault, J. L. and Ng, C. O. 1996 Some applications of the homogenization theory.
*Adv. Appl. Mech*.**32**, 278–348.Google Scholar - Merkin, J. H. 1978 Free convection boundary layers in a saturated porous medium with lateral mass flux.
*Int. J. Heat Mass Transfer***21**, 1499–1504.MATHCrossRefGoogle Scholar - Merkin, J. H. 1979 Free convection boundary layers on axisymmetric and two-dimensional bodies of arbitrary shape in a saturated porous medium.
*Int. J. Heat Mass Transfer***22**, 1461–1462.CrossRefGoogle Scholar - Merkin, J. H. 1980 Mixed convection boundary layer flow on a vertical surface in a saturated porous medium.
*J. Engng. Math*.**14**, 301–313.MathSciNetMATHCrossRefGoogle Scholar - Merkin, J. H. and Needham, D. J. 1987 The natural convection flow above a heated wall in a saturated porous medium.
*Quart. J. Mech. Appl. Math*.**40**, 559–574.MathSciNetMATHCrossRefGoogle Scholar - Mojtabi, A. and Charrier-Mojtabi, M. C. 1992 Analytic solution of steady natural convection in an annular porous medium evaluated with a symbolic algebra code.
*ASME J. Heat Transfer***114**, 1065–1068.CrossRefGoogle Scholar - Morega, A. M. and Bejan, A. 1994 Heatline visualization of convection in porous media.
*Int. J. Heat Fluid Flow***15**, 42–47.CrossRefGoogle Scholar - Morega, A. M., Bejan, A. and Lee, S. W. 1995 Free stream cooling of a stack of parallel plates.
*Int. J. Heat Mass Transfer***38**, 519–531.CrossRefGoogle Scholar - Morland, L. W., Zebib, A. and Kassoy, D. R. 1977 Variable property effects on the onset of convection in an elastic porous matrix.
*Phys. Fluids***20**, 1255–1259.CrossRefGoogle Scholar - Oberbeck, A. 1879 Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen.
*Ann. Phys. Chem*.**7**, 271–292.MATHGoogle Scholar - Ochoa-Tapia, J. A. and Whitaker, S. 1995a Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development.
*Int. J. Heat Mass Transfer***38**, 2635–2646.MATHCrossRefGoogle Scholar - Ochoa-Tapia, J. A. and Whitaker, S. 1995b Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. Comparison with experiment.
*Int. J. Heat Mass Transfer***38**, 2647–2655.CrossRefGoogle Scholar - Kuznetsov, A. V. and Vafai, K. 1995a Development and investigation of three-phase model of the mushy zone for analysis of porosity formation in solidifying castings.
*Int. J. Heat Mass Transfer***38**, 2557–2567.MATHCrossRefGoogle Scholar - Kuznetsov, A. V. and Vafai, K. 1995b Analytical comparison and criteria for heat and mass transfer models in metal hydride packed beds.
*Int. J. Heat Mass Transfer***3 8**, 2873–2884.Google Scholar - Kvernvold,
**O**. 1979 On the stability of nonlinear convection in a Hele—Shaw cell.*Int. J. Heat Mass Transfer***22**395–400.Google Scholar - Kvernvold, O. and Tyvand, P. A. 1979 Nonlinear thermal convection in anisotropic porous media.
*J. Fluid Mech*.**90**, 609–624.MATHCrossRefGoogle Scholar - Kvernvold, O. and Tyvand, P. A. 1980 Dispersion effects on thermal convection i n porous media.
*J. Fluid Mech*.**99**, 673–686.MATHCrossRefGoogle Scholar - Kvernvold, O. and Tyvand, P. A. 1981 Dispersion effects on thermal convection in a Hele—Shaw cell.
*Int. J. Heat Mass Transfer***24**, 887–990.MATHCrossRefGoogle Scholar - Kwendakwema, N.J. and Boehm, R.F. 1991 Parametric study of mixed convection in a porous medium between vertical concentric cylinders.
*ASME J. Heat Transfer***113**, 128–134.CrossRefGoogle Scholar - Kwok, L. P. and Chen, C. F. 1987 Stability of thermal convection in a vertical porous layer.
*ASME J. Heat Transfer***109**, 889–893.CrossRefGoogle Scholar - Lage, J. L. 1992 Effect of the convective inertia term on Bénard convection in a porous medium.
*Numer. Heat Transfer A***22**, 469–485.CrossRefGoogle Scholar - Lage, J. L. 1993a Natural convection within a porous medium cavity: Predicting tools for flow regime and heat transfer.
*Int. Comm. Heat Mass Transfer***20**, 501–513.CrossRefGoogle Scholar - Lage, J. L. 1993b On the theoretical prediction of transient heat transfer within a rectangular fluid-saturated porous medium enclosure.
*ASME J. Heat Transfer***115**, 1069–1071.CrossRefGoogle Scholar - Lage, J. L. 1996 Comments on “The effect of turbulence on solidification of a binary metal alloy with electromagnetic stirring.”
*ASME J. Heat Transfer***118**, 996–997.CrossRefGoogle Scholar - Lage, J. L. 1997 Contaminant clean-up in a single rock fracture with porous obstructions.
*ASME J. Fluids Engng*.**119**, 180–187.CrossRefGoogle Scholar - Lage, J. L. 1998 The fundamental theory of flow through permeable media: From Darcy to turbulence.
*Transport Phenomena in Porous Media*(eds. D.B. Ingham and I. Pop). Elsevier, Amsterdam, pp. 1–30.Google Scholar - Lage, J. L. and Bejan, A. 1990 Numerical study of forced convection near a surface covered with hair.
*Int. J. Heat Fluid Flow***11**, 242–248.CrossRefGoogle Scholar - Lage, J. L. and Bejan, A. 1991 Natural convection from a vertical surface covered with hair.
*Int. J. Heat Fluid Flow***12**, 46–53.CrossRefGoogle Scholar - Lage, J. L. and Bejan, A. 1993 The resonance of natural convection in an enclosure heated periodically from the side.
*Int. J. Heat Mass Transfer***36**, 2027–2038.MATHCrossRefGoogle Scholar - Lage, J. L. and Nield, D. A. 1997 Comments on “Numerical studies of forced convection heat transfer from a cylinder embedded in a packed bed.”
*Int. J. Heat Mass Transfer***40**, 1725–1726.CrossRefGoogle Scholar - Lage, J. L. and Nield, D. A. 1998 Convection induced by inclined gradients in a shallow porous medium layer.
*J. Porous Media***1**, 57–69.MATHGoogle Scholar - Lage, J. L., Bejan, A. and Georgiadis, J. G. 1992 The Prandtl number effect near the onset of Bénard convection in a porous medium.
*Int. J. Heat Fluid Flow***13**, 408–411.CrossRefGoogle Scholar - Lage, J. L., Weinert, A. K., Price, D. C. and Weber, R. M. 1996 Numerical study of a low permeability microporous heat sink for cooling phased-array radar systems.
*Int. J. Heat Mass Transfer***39**, 3633–3647.CrossRefGoogle Scholar - Lage, J. L., Antohe, B. V. and Nield, D. A. 1997 Two types of nonlinear pressure-drop versus flow-rate relation observed for saturated porous media.
*ASME J. Fluids Engng*,**119**, 701–706.Google Scholar - Lai, C. H., Bodvarsson, G. S. and Truesdell, A. H. 1994 Modeling studies of heat transfer and phase distribution in two-phase geothermal reservoirs,
*Geothermics***23**, 3–20.CrossRefGoogle Scholar - Lai, F. C. 1990a Coupled heat and mass transfer by natural convection from a horizontal line source in saturated porous medium.
*Int. Comm. Heat Mass Transfer***17**, 489–499.CrossRefGoogle Scholar - Lai, F. C. 1990b Natural convection from a concentrated heat source in a saturated porous medium.
*Int. Comm. Heat Mass Transfer***17**, 791–800.CrossRefGoogle Scholar - Lai, F. C. 199la Coupled heat and mass transfer by mixed convection from a vertical plate in a saturated porous medium.
*Int. Comm. Heat Mass Transfer***18**, 93–106.Google Scholar - Lai, F. C. 1991b Non-Darcy natural convection from a line source of heat in a saturated porous medium.
*Int. Comm. Heat Mass Transfer***18**, 445–457.CrossRefGoogle Scholar - Lai, F. C. 1991c Non-Darcy mixed convection from a line source of heat in a saturated porous medium.
*Int. Comm. Heat Mass Transfer***18**, 875–887.CrossRefGoogle Scholar - Lai, F. C. 1993a Improving effectiveness of pipe insulation by using radial baffles to suppress natural convection.
*Int. J. Heat Mass Transfer***36**, 899–908.CrossRefGoogle Scholar - Lai, F. C. 1993b Natural convection in a horizontal porous annulus with mixed type of radial baffles.
*Int. Comm. Heat Mass Transfer***20**, 347–359.CrossRefGoogle Scholar - Lai, F. C. 1994 Natural convection in horizontal porous annuli with circumferential baffles.
*AIAA J. Thermophys. Heat Transfer***8**, 376–378.CrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1987 Non-Darcy convection from horizontal impermeable surfaces in saturated porous media.
*Int. J. Heat Mass Transfer***3 0**, 2189–2192.Google Scholar - Lai, F. C. and Kulacki, F. A. 1988a Effects of flow inertia on mixed convection along a vertical surface in a saturated porous medium.
*ASME HTD***96**, vol. 1, 643–652.Google Scholar - Lai, F. C. and Kulacki, F. A. 1988b Transient mixed convection in horizontal porous layer locally heated from below.
*ASME HTD***96**, vol. 2, 353–364.Google Scholar - Lai, F. C. and Kulacki, F. A. 1988c Natural convection across a vertical layered porous cavity.
*Int. J. Heat Mass Transfer***31**, 1247–1260.CrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1989a Thermal dispersion effects on non-Darcy convection over horizontal surfaces in saturated porous media.
*Int. J. Heat Mass Transfer***32**, 971–976.CrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1989b Effects of variable fluid viscosity on film condensation along an inclined surface in saturated porous medium.
*ASME HTD***127**, 7–12.Google Scholar - Lai, F. C. and Kulacki, F. A. 1990a Coupled heat and mass transfer from a sphere buried in an infinite porous medium.
*Int. J. Heat Mass Transfer***33**, 209–215.CrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1990b The influence of surface mass flux on mixed convection over horizontal plates in saturated porous media.
*Int. J. Heat Mass Transfer***33**, 576–579.CrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1990c The effect of variable viscosity on convective heat transfer along a vertical surface in a saturated porous medium.
*Int. J. Heat Mass Transfer***33**, 1028–1031.CrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1990d The influence of lateral mass flux on mixed convection over inclined surfaces in saturated porous media.
*ASME J. Heat Transfer***112**, 515–518.CrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1991a Non-Darcy mixed convection along a vertical wall in a saturated porous medium.
*ASME J. Heat Transfer***113**, 252–255.CrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1991b Experimental study of free and mixed convection in horizontal porous layers locally heated from below.
*Int. J. Heat Mass Transfer***34**, 525–541.CrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1991c Oscillatory mixed convection in horizontal porous layers locally heated from below.
*Int. J. Heat Mass Transfer***34**, 887–890.CrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1991d Coupled heat and mass transfer by natural convection from vertical surfaces in porous media.
*Int. J. Heat Mass Transfer***34**, 1189–1194.CrossRefGoogle Scholar - Lai, F. C. and Kulacki, F. A. 1991e Experimental study in horizontal layers with multiple heat sources.
*AIAA J. Thermophys. Heat Transfer***5**, 627–630.CrossRefGoogle Scholar - Lai, F. C., Choi, C. Y. and Kulacki, F. A. 1990a Free and mixed convection in horizontal porous layers with multiple heat sources.
*AIAA J. Thermophys. Heat Transfer***4**, 221–227.CrossRefGoogle Scholar - Lai, F. C., Choi, C. Y. and Kulacki, F. A. 1990b Coupled heat and mass transfer by natural convection from slender bodies of revolution in porous media.
*Int. Comm. Heat Mass Transfer***17**, 609–620.CrossRefGoogle Scholar - Lai, F. C., Kulacki, F. A. and Prasad, V. 1987a Mixed convection in horizontal porous layers: effects of thermal boundary conditions.
*ASME HTD***84**, 91–96.Google Scholar - Lai, F. C., Kulacki, F. A. and Prasad, V. 1991a Mixed convection in saturated porous media.
*Convective Heat and Mass Transfer in Porous Media*(eds. S. Kakaç, B. Kilkis, F. A. Kulacki and F. Arinç). Kluwer Academic, Dordrecht, pp. 225–287.Google Scholar - Lai, F. C., Pop, I. and Kulacki, F. A. 1990c Free and mixed convection from slender bodies of revolution in porous media.
*Int. J. Heat Mass Transfer***33**, 1767–1769.CrossRefGoogle Scholar - Lai, F. C., Pop, I. and Kulacki, F. A. 1991b Natural convection from isothermal plates embedded in thermally stratified porous media.
*AIAA J. Thermophys. Heat Transfer***4**, 533–535.Google Scholar - Lai, F. C., Prasad, V. and Kulacki, F. A. 1987b Effects of the size of heat source on mixed convection in horizontal porous layers heated from below.
*Proc. ASME JSME Thermal Engineering Joint Conference*, vol. 2, pp. 413–419.Google Scholar - Lai, F. C., Prasad, V. and Kulacki, F. A. 1988 Aiding and opposing mixed convection in a vertical porous layer with a finite wall heat source.
*Int. J. Heat Mass Transfer***31**, 1049–1061.CrossRefGoogle Scholar - Lan, X. K. and Khodadadi,
*J*. M. 1993 Fluid flow and heat transfer through a porous medium channel with permeable walls.*Int. J. Heat Mass Transfer***36**, 2242–2245.Google Scholar - Lapwood, E. R. 1948 Convection of a fluid in a porous medium.
*Proc. Cambridge Philos. Soc*.**44**, 508–521.MathSciNetMATHCrossRefGoogle Scholar - Larbi, S., Bacon, G. and Bories, S. A. 1995 Diffusion d’air humide avec condensation de vapeur d’eau en milieu poreux.
*Int. J. Heat Mass Transfer***38**, 2411–2426.CrossRefGoogle Scholar - Larson, S. E. and Poulikakos, D. 1986 Double diffusion from a horizontal line source in an infinite porous medium.
*Inn. J. Heat Mass Transfer***29**, 492–495.MATHCrossRefGoogle Scholar - Lauriat, G. and Prasad, V. 1987 Natural convection in a vertical porous cavity: A numerical study for Brinkman-extended Darcy formulation.
*ASME J. Heat Transfer***109**, 688–696.CrossRefGoogle Scholar - Lauriat, G. and Prasad, V. 1989 Non-Darcian effects on natural convection in a vertical porous layer.
*Int. J. Heat Mass Transfer***32**, 2135–2148.CrossRefGoogle Scholar - Lauriat, G. and Prasad, V. 1991 Natural convection in a vertical porous annulus.
*Convective Heat and Mass Transfer in Porous Media*(eds. S. Kakaç, B. Kilkis, F. A. Kulacki and F. Arinç). Kluwer Academic, Dordrecht, pp. 143–172.Google Scholar - Lauriat, G. and Vafai, K. 1991 Forced convection flow and heat transfer through a porous medium exposed to a flat plate or a channel.
*Convective Heat and Mass Transfer in Porous Media*(eds. S. Kakaç, B. Kilkis, F. A. Kulacki and F. Arinç), Kluwer Academic, Dordrecht, pp. 289–327.Google Scholar - Lawson, M. L. and Yang, W. J. 1975 Thermal instability of binary gas mixtures in a porous medium.
*ASME J. Heat Transfer***97**, 378–381.CrossRefGoogle Scholar - Lawson, M. L., Yang, W. J. and Bunditkul, S. 1976 Theory of thermal stability of binary gas mixtures in porous media.
*ASME J. Heat Transfer***98**, 35–41.CrossRefGoogle Scholar - Le Breton, P., Caltagirone, J. P. and Arquis, E. 1991 Natural convection in a square cavity with thin porous layers on its vertical walls.
*ASME J. Heat Transfer***113**, 892–898.CrossRefGoogle Scholar - Lebon, G. and Cloot, A. 1986 A thermodynamical modelling of fluid flows through porous media: Application to natural convection.
*Int. J. Heat Mass Transfer***29**, 381–390.MATHCrossRefGoogle Scholar - Ledezma, G. A., Bejan, A. and Errera, M. R. 1997 Constructal tree networks for heat transfer.
*J. Appl. Phys*.**82**, 89–100.CrossRefGoogle Scholar - Ledezma, G., Morega, A. M. and Bejan, A. 1996 Optimal spacing between fins with impinging flow.
*J. Heat Transfer***118**, 570–577.CrossRefGoogle Scholar - Lee, H. M. 1983 An experimental study of natural convection about an isothermal downward-facing inclined surface in a porous medium. M.S. Thesis, University of Hawaii.Google Scholar
- Lee, J. S. and Ogawa, K. 1994 Pressure drop through packed bed.
*J. Chem. Engng. Japan***27**, 691–693.CrossRefGoogle Scholar - Lee, K. and Howell, J. R. 1987 Forced convective and radiative transfer within a highly porous layer exposed to a turbulent external flow field.
*Proc. 2nd ASME/JSME Thermal Engineering Joint Conference*, vol. 2, pp. 377–386.Google Scholar - Lee, K. B. and Howell, J. R. 1991 Theoretical and experimental heat and mass transfer in highly porous media.
*Int. J. Heat Mass Transfer***34**, 2123–2132.CrossRefGoogle Scholar - Lein, H. and Tankin, R. S. 1992a Natural convection in porous media—I. Nonfreezing.
*Int. J. Heat Mass Transfer***35**, 175–186.CrossRefGoogle Scholar - Lein, H. and Tankin, R. S. 1992b Natural convection in porous media—II. Freezing.
*Int. J. Heat Mass Transfer***35**, 187–194.CrossRefGoogle Scholar - Lesnic, D., Ingham, D. B. and Pop, I. 1995 Conjugate free convection from a horizontal surface in a porous medium.
*Z. Angew. Math. Mech*., 715–722.MathSciNetMATHCrossRefGoogle Scholar**75** - Leu, J. S. and Jang, J. Y. 1993 Variable viscosity effects on the vortex instability of the convective boundary layer flow over a horizontal uniform heat flux surface in a saturated porous medium.
*Proc. 6th Int. Sympos. Transport Phenomena and Thermal Engineering*, Seoul, Korea. vol. 1, pp. 203–208.Google Scholar - Leu, J. S. and Jang, J. Y. 1994 The wall and free plumes above a horizontal line source in non-Darcian porous media.
*Int. J. Heat Mass Transfer***37**, 1925–1933.MATHCrossRefGoogle Scholar - Leu, J. S. and Jang, J. Y. 1995 The natural convection from a point heat source embedded in a non-Darcian porous medium.
*Int..1. Heat Mass Transfer***38**, 1097–1104.MATHCrossRefGoogle Scholar - Levy, T. 1981 Loi de Darcy ou loi de Brinkman?
*C*.**R***. Acad. Sci. Paris Sér. II***292**, 872–874.Google Scholar - Levy, T. 1990 Écoulement dans un milieu poreux avec fissures unidirectionelles.
*C.R. Acad. Sci. Paris Sér*.**11310**, 685–690.Google Scholar - Lewis, S., Bassom, A. P. and Rees, D. A. S. 1995 The stability of vertical thermal boundary-layer flow in a porous medium.
*European J. Mech. B/Fluids***14**, 395–407.MathSciNetMATHGoogle Scholar - Poulikakos, D. and Bejan, A. 1984a Natural convection in a porous layer heated and cooled along one vertical side.
*Int. J. Heat Mass Transfer***27**, 1879–1891.MATHCrossRefGoogle Scholar - Poulikakos, D. and Bejan, A. 1984a Natural convection in a porous layer heated and cooled along one vertical side.
*Int. J. Heat Mass Transfer***27**, 1879–1891.MATHCrossRefGoogle Scholar - Poulikakos, D. and Bejan, A. 1984b Penetrative convection in porous medium bounded by a horizontal wall with hot and cold spots.
*Int. J. Heat Mass Transfer***27**, 1749–1757.MATHCrossRefGoogle Scholar - Poulikakos, D. and Bejan, A. 1985 The departure from Darcy flow in natural convection in a vertical porous layer.
*Phys. Fluids***28**, 3477–3484.MathSciNetMATHCrossRefGoogle Scholar - Poulikakos, D. and Kazmierczak, M. 1987 Forced convection in a duct partially filled with a porous material.
*ASME J. Heat Transfer***109**, 653–662.CrossRefGoogle Scholar - Prax, C., Sadat, H. and Slagnac, P. 1996 Diffuse approximation method for solving natural convection in porous media.
*Transport in Porous Media***22**, 215–223.CrossRefGoogle Scholar - Prescott, P. J. and Incropera, F. P. 1995 The effect of turbulence on solidification of binary metal alloy with electromagnetic stirring.
*ASME J. Heat Transfer***117**, 716–724.CrossRefGoogle Scholar - Prescott, P. J. and Incropera, F. P. 1996 Convection heat and mass transfer in alloy solidification.
*Adv. Heat Transfer***28**, 231–329.CrossRefGoogle Scholar - Rees, D. A. S. and Riley, D. S. 1985 Free convection above a near horizontal semi-infinite heated surface embedded in a saturated porous medium.
*Int. J. Heat Mass Transfer***28**, 183–190.MATHCrossRefGoogle Scholar - Rees, D. A. S. and Riley, D. S. 1989a The effects of boundary imperfections on convection in a saturated porous layer: Near-resonant wavelength excitation.
*J. Fluid Mech*.**199**, 133–154.MathSciNetMATHCrossRefGoogle Scholar - Rees, D. A. S. and Riley, D. S. 1989b The effects of boundary imperfections on convection in a saturated porous layer: Non-resonant wavelength excitation.
*Proc. Roy. Soc. London Ser. A***421**, 303–339.MATHCrossRefGoogle Scholar - Rees, D. A. S. and Bassom, A. P. 1991 Some exact solutions for free convective flows over heated semi-infinite surfaces in porous media.
*Int. J. Heat Mass Transfer***34**, 1564–1567.CrossRefGoogle Scholar - Rees, D. A. S. and Bassom, A. P. 1993 The nonlinear non-parallel wave instability of boundary-layer flow induced by a horizontal heated surface in porous media.
*J. Fluid Mech*.**253**, 267–295.MathSciNetMATHCrossRefGoogle Scholar - Rees, D. A. S. and Bassom, A. P. 1994 The linear wave instability of boundary layer flow induced by a horizontal heated surface in porous media.
*Int. Comm. Heat Mass Transfer***21**, 143–150.CrossRefGoogle Scholar - Rees, D. A. S. and Lage, J. L. 1996 The effect of thermal stratification on natural convection in a vertical porous medium layer.
*Int. J. Heat Mass Transfer***40**, 111–121.CrossRefGoogle Scholar - Rubin, H. 1975 Effect of solute dispersion on thermal convection in a porous medium layer. 2.
*Water Resources Res*.**11**, 154–158.CrossRefGoogle Scholar - Rubin, H. 1976 Onset of thermohaline convection in a cavernous aquifer.
*Water Resources Res*.**12**, 141–147.CrossRefGoogle Scholar - Rubin, H. 1981 Onset of thermohaline convection in heterogeneous porous media.
*Israel J. Tech*.**19**, 110–117.MATHGoogle Scholar - Rubin, H. 1982a Thermohaline convection in a nonhomogeneous aquifer.
*J. Hydrol*.**57**, 307–320.CrossRefGoogle Scholar - Rubin, H. 1982b Application of the aquifer’s average characteristics for determining the onset of thermohaline convection in a heterogeneous aquifer.
*J. Hydrol*.**57**, 321–336.CrossRefGoogle Scholar - Schubert, G. and Straus, J. M. 1982 Transitions in time-dependent thermal convection in fluid-saturated porous media.
*J. Fluid Mech*.**121**, 301–303.MATHCrossRefGoogle Scholar - Schulenberg, T. and Müller, U. 1984 Natural convection in saturated porous layers with internal heat sources.
*Int. J. Heat Mass Transfer***27**, 677–685.CrossRefGoogle Scholar - Seetharamu, K. N. and Dutta, P. 1990 Free convection in a saturated porous medium adjacent to a non-isothermal vertical impermeable wall.
*Wärme-Stoffübertrag*.**25**, 9–15.CrossRefGoogle Scholar - Selimos, B. and Poulikakos, D. 1985 On double diffusion in a Brinkman heat generating porous layer.
*Int. Comm. Heat Mass Transfer***12**, 149–158.CrossRefGoogle Scholar - Sheridan, J., Williams, A. and Close, D. J. 1992 Experimental study of natural convection with coupled heat and mass transfer in porous media.
*Int. J. Heat Mass Transfer***35**, 2131–2143.CrossRefGoogle Scholar - Shin, U. C., Khedari, J. Mbow, C. and Daguenet, M. 1994 Convection naturelle thermique a l’intérieur d’une calotte cylindrique poreuse d’axe horizontal: Etude théorique.
*Rev. Gén. Thermique***33**, 30–37.Google Scholar - Shiralkar, G. S., Haadjizadeh, M. and Tien, C. L. 1983 Numerical study of high Rayleigh number convection in a vertical porous enclosure.
*Numer. Heat Transfer A***6**, 223–234.MATHGoogle Scholar - Storesletten, L. and Tveitereid, M. 1987 Thermal convection in a porous medium confined by a horizontal cylinder.
*ASME HTD***92**, 223–230.Google Scholar - Storesletten, L. and Tveitereid, M. 1991 Natural convection in a horizontal porous cylinder.
*Int. J. Heat Mass Transfer***34**, 1959–1968.MATHCrossRefGoogle Scholar - Strange, R. and Rees, D. A. S. 1996 The effect of fluid inertia on the stability of free convection in a saturated porous medium heated from below.
*Proceedings of the International Conference on Porous Media and their Applications in Science, Engineering and Industry*(eds. K. Vafai and P. N. Shivakumar). Engineering Foundation, New York, pp. 71–84.Google Scholar - Straughan, B. 1988 A nonlinear analysis of convection in a porous vertical slab.
*Geophys. Astrophys. Fluid Dyn*.**42**, 269–276.MathSciNetMATHCrossRefGoogle Scholar - Thevenin, J. 1995 Transient forced convection heat transfer from a circular cylinder embedded in a porous medium.
*Int. Comm. Heat Mass Transfer***22**, 507–516.CrossRefGoogle Scholar - Thevenin, J. and Sadaoui, D. 1995 About enhancement of heat transfer over a circular cylinder embedded in a porous medium.
*Int. J. Heat Mass Transfer***22**, 205–304.Google Scholar - Tien, C. L. and Vafai, K. 1990 Convective and radiative heat transfer in porous media.
*Adv. Appl. Mech*.**27**, 225–281.MATHCrossRefGoogle Scholar - Trevisan, O. V. and Bejan, A. 1986 Mass and heat transfer by natural convection in a vertical slot filled with porous medium.
*Int. J. Heat Mass Transfer***29**, 403–415.MATHCrossRefGoogle Scholar - Trevisan, O. V. and Bejan, A. 1987a Combined heat and mass transfer by natural convection in a vertical enclosure.
*ASME J. Heat Transfer***109**, 104–109.CrossRefGoogle Scholar - Trevisan, O. V. and Bejan, A. 1987b Mass and heat transfer by high Rayleigh number convection in a porous medium heated from below.
*Int. J. Heat Mass Transfer***30**, 2341–2356.CrossRefGoogle Scholar - Vadasz, P. 1995 Coriolis effect on free convection in a long rotating box subject to uniform heat generation.
*Int. J. Heat Mass Transfer***38**, 2011–2018.MATHCrossRefGoogle Scholar - Vadasz, P. 1996a Stability of free convection in a rotating porous layer distant from the axis of rotation.
*Transport in Porous Media***23**, 153–173.CrossRefGoogle Scholar - Weidman, P. D. and Kassoy, D. R. 1986 Influence of side wall heat transfer on convection in a confined saturated porous medium.
*Phys. Fluids***29**, 349–355.MathSciNetMATHCrossRefGoogle Scholar - Wettlaufer, J. S., Worster, M. G. and Huppert, H. E. 1997 Natural convection during solidification of an alloy from above with application to the evolution of sea
*ice. J. Fluid Mech*.**344**, 291–316.CrossRefGoogle Scholar - Vedha-Nayagam, M., Jain, P. and Fairweather, G. 1987 The effect of surface mass transfer on buoyancy induced flow in a variable-porosity medium adjacent to a horizontal heated plate.
*Int. Comm. Heat Mass Transfer***14**, 495–506.CrossRefGoogle Scholar - Vynnycky, M. and Kimura, S. 1994 Conjugate free convection due to a vertical plate in a porous medium.
*Int. J. Heat Mass Transfer***37**, 229–236.MATHCrossRefGoogle Scholar - Vynnycky, M. and Kimura, S. 1995 Transient conjugate free convection due to a vertical plate in a porous medium.
*Int. J. Heat Mass Transfer***38**, 219–231.MATHCrossRefGoogle Scholar - Vynnycky, M. and Pop, I. 1997 Mixed convection due to a finite horizontal flat plate embedded in a porous medium.
*J. Fluid Mech*.,**351**, 359–378.MATHCrossRefGoogle Scholar - Yan, B., Pop, I. and Ingham, D. B. 1997 A numerical study of unsteady free convection from a sphere in a porous medium.
*Int J. Heat Mass Transfer***40**, 893–903.MATHCrossRefGoogle Scholar - Yang, Y. T. and Wang, S. J. 1996 Free convection heat transfer of non-Newtonian fluids over axisymmetric and two—dimensional bodies of arbitrary shape embedded in a fluid-saturated porous medium.
*Int. J. Heat Mass Transfer***39**, 203–210.CrossRefGoogle Scholar - Zaturska, M. B. and Banks, W. H. H. 1987 On the spatial stability of free-convection flows in a saturated porous medium.
*J. Engng. Math*.**21**, 41–46.MATHCrossRefGoogle Scholar

## Copyright information

© Springer Science+Business Media New York 1999