Advertisement

The Steiner Ratio of Lp-planes

  • Jens Albrecht
  • Dietmar Cieslik

Abstract

Starting with the famous book ”What is Mathematics” by Courant and Robbins the following problem has been popularized under the name of Steiner: For a given finite set of points in a metric space find a network which connects all points of the set with minimal length. Such a network must be a tree, which is called a Steiner Minimal Tree (SMT). It may contain vertices other than the points which are to be connected. Such points are called Steiner points.1 A classical survey of this problem in the Euclidean plane was given by Gilbert and Pollak [23]. An updated one can be found in [27].

Keywords

Unit Ball Minimum Span Tree Euclidean Plane Steiner Point Steiner Tree Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Albrecht. Das Steinerverhiiltnis endlich dimensionaler L P -Räumen. Master’s thesis, Ernst-Moritz-Arndt Universität Greifswald, 1997.Google Scholar
  2. [2]
    J. Albrecht and D. Cieslik. The Steiner ratio of finite dimensional L-spaces. to appear in Advances in Steiner Trees, 1998.Google Scholar
  3. [3]
    D. Cheriton and R.E. Tarjan. Finding Minimum Spanning Trees. SIAM J. Comp. Vol. 5 (1976) pp. 724–742.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    F.R.K. Chung and R.L. Graham. A new bound for Euclidean Steiner Minimal Trees. Ann. N.Y. Acad. Sci. Vol. 440 (1985) pp. 328–346.MathSciNetCrossRefGoogle Scholar
  5. [5]
    F.R.K. Chung and F.K. Hwang. A lower bound for the Steiner Tree Problem. SIAM J. Appl. Math. Vol. 34 (1978) pp. 27–36.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    D. Cieslik. The Steiner-ratio in Banach-Minkowski planes. In R. Bodendieck, editor, Contemporary Methods in Graph Theory, ( Bibliographisches Institut, Mannheim, 1990 ) pp. 231–247.Google Scholar
  7. [7]
    D. Cieslik. Steiner Minimal Trees. (Kluwer Academic Publishers, 1998 ).Google Scholar
  8. [8).
    D. Cieslik. The Steiner ratio of G2 k to appear in Applied Discrete Mathematics. Google Scholar
  9. [9]
    D. Cieslik and J. Linhart. Steiner Minimal Trees in L. Discrete Mathematics Vol. 155 (1996) pp. 39–48.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    E.J. Cockayne. On the Steiner Problem. Canad. Math. Bull. Vol. 10 (1967) pp. 431–450.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    D.Z. Du, B. Gao, R.L. Graham, Z.C. Liu, and P.J. Wan. Minimum Steiner Trees in Normed Planes. Discrete and Computational Geometry Vol. 9 (1993) pp. 351–370.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    D.Z. Du and F.K. Hwang. A new bound for the Steiner Ratio. Trans. Am. Math. Soc. Vol. 278 (1983) 137–148.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    D.Z. Du and F.K. Hwang. An Approach for Proving Lower Bounds: Solution of Gilbert-Pollak’s conjecture on Steiner ratio. Proc. of the 31st Ann. Symp. on Foundations of Computer Science, St. Louis, 1990.Google Scholar
  14. [14]
    D.Z. Du and F.K. Hwang. Reducing the Steiner Problem in a normed space. SIAM J. Computing Vol. 21 (1992) 1001–1007.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    D.Z. Du, F.K. Hwang, and E.N. Yao. The Steiner ratio conjecture is true for five points. J. Combin. Theory, Ser. A Vol. 38 (1985) pp. 230240.Google Scholar
  16. [16]
    D.Z. Du, E.Y. Yao, and F.K. Hwang. A Short Proof of a Result of Pollak on Steiner Minimal Trees. J. Combin. Theory, Ser. A Vol. 32 (1982) pp. 396–400.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    P. Fermat. Abhandlungen über Maxima und Minima. Oswalds Klassiker der exakten Wissenschaften, Number 238, 1934.Google Scholar
  18. [18]
    B. Gao, D.Z. Du and R.L. Graham. A Tight Lower Bound for the Steiner Ratio in Minkowski Planes. Discrete Mathematics Vol. 142 (1993) 49–63.MathSciNetCrossRefGoogle Scholar
  19. [19]
    M.R. Garey, R.L. Graham, and D.S. Johnson. The complexity of computing Steiner Minimal Trees. SIAM J. Appl. Math. Vol. 32 (1977) pp. 835–859.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    M.R. Garey and D.S. Johnson. The rectilinear Steiner Minimal Trees is NP-complete. SIAM J. Appl. Math. Vol. 32 (1977) pp. 826–834.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    M.R. Garey and D.S. Johnson. Computers and Intractibility. (San Francisco, 1979 ).Google Scholar
  22. [22]
    C.F. Gauß. Briefwechsel Gauß-Schuhmacher. Werke Bd. X,1, (Göttingen, 1917 ) pp. 459–468.Google Scholar
  23. [23]
    E.N. Gilbert and H.O. Pollak. Steiner Minimal Trees. SIAM J. Appl. Math. Vol. 16 (1968) pp. 1–29.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    R.L. Graham and P. Hell. On the History of the Minimum Spanning Tree Problem. Ann. Hist. Comp. Vol. 7 (1985) pp. 43–57.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    R.L. Graham and F.K. Hwang. A remark on Steiner Minimal Trees. Bull. of the Inst. of Math. Ac. Sinica Vol. 4 (1967) pp. 177–182.MathSciNetGoogle Scholar
  26. [26]
    F.K. Hwang. On Steiner Minimal Trees with rectilinear distance. SIAM J. Appl. Math. Vol. 30 (1976) pp. 104–114.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    F.K. Hwang, D.S. Richards, and P. Winter. The Steiner Tree Problem. (North-Holland, 1992 ).Google Scholar
  28. [28]
    J.B. Kruskal. On the shortest spanning subtree of a graph and the travelling salesman problem. Proc. of the Am. Math. Soc. Vol. 7 (1956) pp. 48–50.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    Z.C. Liu and D.Z. Du. On Steiner Minimal Trees with Lp Distance. Algorithmica Vol. 7 (1992) pp. 179–192.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    H.O. Pollak. Some remarks on the Steiner Problem. J. Combin. Theory, Ser. A Vol. 24 (1978) pp. 278–295.MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    J.H. Rubinstein and D.A. Thomas. The Steiner Ratio conjecture for six points. J. Combin. Theory, Ser. A Vol. 58 (1991) pp. 54–77.Google Scholar
  32. [32]
    P.J. Wan, D.Z. Du, and R.L. Graham. The Steiner ratio of the Dual Normed Plane. Discrete Mathematics Vol, 171 (1997) pp. 261–275.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Jens Albrecht
    • 1
  • Dietmar Cieslik
    • 1
  1. 1.Institute of Mathematics and Computer ScienceUniversity of GreifswaldGermany

Personalised recommendations